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I. ABSTRACT

Tactical wireless networks often comprise clusters of nodes, which are fed information from a head

node. Transmit antenna arrays mounted on the head node (e.g., unmanned aerial vehicle) offer an at-

tractive means of boosting capacity and assuring quality of service through transmit beamforming. The

central goal of our research was to investigate efficient multiuser transmit beamforming strategies, and

develop high-throughput low-complexity algorithms that will meet the needs of future tactical wireless

networks. Sum capacity, quality of service, and fair service objectives were considered, under unicast

and multicast scenarios. A key innovation of our work is the concept of physical layer multicasting,

which affords significant capacity gains. A number of effective and efficient algorithms were developed,

drawing upon and contributing to semidefinite relaxation (SDR) tools. Closely-related added-value top-

ics of our research program included i) computationally efficient quasi-optimal multiple input multiple

output detection (using lattice search, data association, and SDR tools); ii) accurate and scalable node

localization from pairwise distance estimates; and iii) tracking of time-varying carrier signals (using and

developing associated particle filtering tools). Our work on these topics has been reported in seven (IEEE,

SIAM) journal papers and seven IEEE conference papers. Variants of some of our published algorithms

are currently considered for adoption by industry.

Keywords: Transmit beamforming, minimization of radiation power, quality of service, max-min fair,

sum capacity, broadcasting, multicasting, convex optimization, semidefinite programming, NP-hard prob-

lems, semidefinite relaxation, lattice search, integer least squares, node localization, multidimensional

scaling, tracking, intercept, particle filtering



5

II. MOTIVATION AND PROBLEM STATEMENT

Tactical wireless networks must seamlessly support diverse services, including command and

control, “bulk” information dissemination (e.g., terrain maps), and large-scale surveillance and

sensing (e.g., radar, alien signal interception, biochemical sensor networks). These come with

equally diverse service needs: guaranteed quality of service for command and control, very high

transmission rates for bulk information dissemination, reliable detection under stringent energy

constraints for sensor networks. While truly seamless unified solutions are still way down the

road, there is a number of enabling communication technologies and concepts that have emerged

at the center stage of network science, particularly for tactical networks. These include

• The deployment of transmit antenna arrays, for assuring quality of service and/or higher data

rates through spatial multiplexing;

• Wireless multicasting, as a means of improving spectral utilization and assuring quick and

efficient delivery of mission-critical information;

• Effective strategies for vector decoding, as a means of improving spectral efficiency and ro-

bustness to jamming;

• Node localization, for sensing, routing, fading channel estimation, and situational awareness;

and

• Carrier sensing and tracking, for signal intelligence, dynamic spectrum monitoring and access.

Our work in this project addresses many important aspects of the aforementioned enabling

concepts and technologies. While many of our contributions specifically target applications in

tactical networks, some have a clear dual use, e.g., in 802.16e fixed wireless systems and 4G

cellular networks.
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III. METHODOLOGY

Modern convex optimization / convex approximation underlies most of our work in this

project. Specifically, semidefinite programming / semidefinite relaxation forms the basis of our

design approach. More conventional optimization tools and concepts (e.g., water-filling, branch-

and-bound) also come into play in certain algorithms, and particle filtering is the framework for

our work on tracking of time-varying carrier signals.

IV. RESULTS

Our main results and findings are reviewed next, classified in four categories: Multiuser trans-

mit beamforming (including sum capacity, quality of service, and fair service objectives); mul-

tiple input multiple output decoding; node localization; and tracking of time-varying carrier sig-

nals for synchronization, Doppler estimation, and signal intelligence applications. Conclusions

are drawn and recommendations are made in the following section.

A. Multiuser Transmit Beamforming

A.1 Sum capacity objective

Multiuser transmit beamforming forms the core of our work under this project. The idea is to

employ a transmit antenna array to create multiple beams directed towards the individual users,

in order to increase the attainable throughput, as measured by sum capacity. In particular, we are

interested in the practically important case of more users than transmit antennas, which requires

user selection. Optimal solutions to this problem can be prohibitively complex for online imple-

mentation at the access point and entail so-called Dirty Paper (DP) precoding for known interfer-

ence. Suboptimal solutions capitalize on multiuser (selection) diversity to achieve a significant
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fraction of sum capacity at lower complexity cost. We analyzed the throughput performance in

Rayleigh fading of a suboptimal greedy DP-based scheme proposed by Tu and Blum. We also

proposed another user-selection method of the same computational complexity based on simple

zero-forcing beamforming. Our results indicate that the proposed method attains a significant

fraction of sum capacity, similar to Tu and Blums scheme, however at a much lower overall

(design plus implementation) complexity; it thus, offers an attractive alternative to DP-based

schemes.

A.2 Multicasting under Quality of Service (QoS) and Max-min Fair (MMF) objectives

Next, we considered the problem of transmit beamforming in the context of common infor-

mation broadcasting or multicasting applications, wherein channel state information (CSI) is

available at the transmitter. Unlike the usual blind isotropic broadcasting scenario, the availabil-

ity of CSI allows transmit optimization. A minimum transmission power criterion was adopted,

subject to prescribed minimum received signal-to-noise ratios (SNRs) at each of the intended re-

ceivers. A related maxmin SNR fair problem formulation was also considered subject to a trans-

mitted power constraint. It was proven that both problems are NP-hard; however, suitable refor-

mulation allows the successful application of semidefinite relaxation (SDR) techniques. SDR

yields an approximate solution plus a bound on the optimum value of the associated cost/reward.

SDR was motivated from a Lagrangian duality perspective, and its performance was assessed

via pertinent simulations for the case of Rayleigh fading wireless channels. We found that SDR

typically yields solutions that are within 3 to 4 dB of the optimum, which is often good enough

in practice. In several scenarios, SDR generates exact solutions that meet the associated bound

on the optimum value. This was illustrated using far-field beamforming for a uniform linear
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transmit antenna array. Interestingly, these numerical experiments effectively led us to discover

new and exact convex reformulations of the basic problem, via spectral factorization, applicable

when the channel vectors are Vandermonde.

We also analyzed the approximation performance of the aforementioned broadcast beamform-

ing algorithms theoretically. In particular, we showed that SDR provides an O(m2) approxima-

tion in the real case, and an O(m) approximation in the complex case, where m is the total

number of receivers. Moreover, we showed that these bounds are tight up to a constant factor.

When the phase spread of the entries of the steering vectors is bounded away from π/2, we

further established a certain constant factor approximation (depending on the phase spread but

independent of the number of receivers, m and the number of transmit antennas, n) for both

SDR and a convex quadratic programming restriction of the original NP-hard problem. Finally,

we considered a related problem of finding a maximum norm vector subject to m convex homo-

geneous quadratic constraints. We showed that SDR provides an O(1/ln(m)) approximation,

which is analogous to a result of Nemirovski, Roos and Terlaky for the real case.

Having settled the case of a single multicast group, we then generalized to multiple co-channel

multicast groups. Two different design objectives were considered: minimizing total transmis-

sion power while guaranteeing a prescribed minimum signal-to-interference-plus-noise-ratio

(SINR) at each receiver; and a fair approach maximizing the overall minimum SINR under a

total power budget. The core problem is a multicast generalization of the multiuser downlink

beamforming problem; the difference is that each transmitted stream is directed to multiple re-

ceivers, each with its own channel. Such generalization is relevant and timely, e.g., in the context

of 802.16e wireless networks. The joint problem also contains single group multicast beamform-

ing as a special case. The latter (and therefore also the former) is NP-hard. This motivates the
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pursuit of computationally efficient quasi-optimal solutions. It was shown that Lagrangian re-

laxation coupled with suitable randomization / co-channel multicast power control loops yield

computationally efficient high-quality approximate solutions. For a significant fraction of prob-

lem instances, the solutions generated this way are exactly optimal. Extensive numerical results

using both simulated and measured wireless channels (courtesy of the University of Alberta,

Canada) were presented to corroborate our main findings.

Whereas multi-group multicast transmit beamforming under SINR constraints is NP-hard in

general, we have shown that, in the special case of Vandermonde steering vectors it is in fact a

semidefinite problem, which can be exactly and efficiently solved.

We also considered various robust formulations for the problem of single-group multicasting,

when the steering vectors are only approximately known. We obtained an elegant theoretical

relationship between the optimal solutions of the original non-robust and associated robust for-

mulations of the problem: the two are related via a simple (albeit solution-dependent) scaling.

This relationship naturally suggests robust multicast beamforming approximation algorithms,

through semidefinite relaxation of the original non-robust version of the problem.

B. Multiple Input Multiple Output Decoding

Multiple input multiple output (MIMO) communication links are now common in both com-

mercial and tactical wireless networks, for spectral efficiency, fading, and jam-resilience con-

siderations. The associated optimum vector decoding problem is known to be NP-hard. We

developed two new computationally efficient MIMO decoding algorithms that afford very com-

petitive symbol error rate (SER) performance. The first algorithm is a judicious combination

of probabilistic data association (PDA) and sphere decoding (SD). The second is based on the
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principle of semidefinite relaxation (SDR).

The key idea behind the hybrid PDA-SD detector is to reduce the dimension of the problem

solved via SD by first running a single stage of the PDA to fix symbols that can be decoded with

high reliability. This two-step algorithm attains a considerably better performance-complexity

tradeoff than SD and PDA for low to moderate signal-to-noise ratio (SNR) or higher problem

dimensions.

The second approach, based on SDR, has been specifically developed for MIMO systems

employing high-order QAM constellations. The new approach affords improved detection per-

formance compared to existing solutions of comparable worst-case complexity order, which is

nearly cubic in the dimension of the transmitted symbol vector and independent of the constel-

lation order for uniform QAM, or affine in the constellation order for non-uniform QAM.

C. Acquiring Channel State Information: Node Localization

Given a set of pairwise distance estimates between nodes, it is often of interest to generate

a map of node locations. This is an old nonlinear estimation problem that has recently drawn

interest in the signal processing community, due to the emergence of wireless sensor networks.

Sensor maps are useful for estimating the spatial distribution of measured phenomena (includ-

ing shadowing and fading), and for routing purposes. We proposed a two-stage algorithm that

combines algebraic initialization and gradient descent. In particular, we borrowed an algebraic

solution known as Fastmap from the database literature and adapted it to the sensor network

context, using a specific choice of anchor/pivot nodes. The resulting estimates are fed to a gradi-

ent descent iteration. The overall algorithm offers very competitive performance at significantly

lower complexity than existing solutions with similar estimation performance. For a certain mul-
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tiplicative measurement noise model that is often adopted in the literature, we also derived the

pertinent Cramér-Rao bound (CRB). Simulations indicate that the performance of our algorithm

is close to the CRB when the network is (close to) fully connected, in the sense that every node

can estimate its distance from all (most) other nodes. Our adaptation of Fastmap also turns out

to make a big difference when used to initialize other iterative distributed estimation algorithms

that have been developed specifically for sparse networks.

D. Synchronization, Doppler, and Intercept Issues: Particle Filtering Tools

In collaboration with Dr. Ananthram Swami, of ARL/Adelphi, we also investigated problems

in time-varying frequency estimation. These appear in numerous pertinent applications: syn-

chronization, Doppler frequency tracking, and signal intelligence, to name a few. We adopted a

particle filtering (PF) framework, and contributed closed-form solutions for the optimal impor-

tance function, plus associated sampling procedures.

We first considered the problem of tracking the frequency and complex amplitude of a frequency-

hopped complex sinusoid, using a novel stochastic state-space formulation that is naturally

suited for the application of PF tools. The problem is of considerable interest for interference

mitigation in frequency-hopped wireless networks, and for signal intelligence in military com-

munications. The proposed particle filtering approach has a number of desirable features. It

affords high-resolution estimates of carrier frequency and hop timing, manageable complexity

(linear in the number of processed samples), and flexibility in tracking signals with irregular

hopping patterns due to intentional timing jitter. The proposed state-space model is not only

parsimonious, but fortuitous as well: it turns out that the associated optimal importance function

(that minimizes the variance of the particle weights) can be computed in closed form, and thus
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samples from it can be drawn using rejection techniques. Both prior and optimal importance

sampling versions were developed and illustrated in pertinent simulations.

Next, we turned our attention to the problem of tracking the frequency and complex ampli-

tude of a slowly time-varying (TV) harmonic signal. Similar to previous PF approaches to TV

spectral analysis, we assumed that the frequency and complex amplitude evolve according to a

Gaussian AR(1) model; but we concentrated on the important special case of a single TV har-

monic. For this case, we showed that the optimal importance function can be computed in closed

form. We also developed a suitable procedure to sample from the optimal importance function.

The end result is a custom PF solution that is more efficient than generic ones, and can be used

in a broad range of important applications that postulate a single TV harmonic component, e.g.,

TV Doppler estimation in communications and radar.

E. Publications

Summarizing the status of journal papers (5 appeared/accepted + 2 submitted for publication

= 7 overall):

1. E. Karipidis, N.D. Sidiropoulos, Z.-Q. Luo, “Quality of Service and Max-min-fair Transmit

Beamforming to Multiple Co-channel Multicast Groups, submitted to IEEE Trans. on Signal

Processing, July 2006.

2. G. Latsoudas, N.D. Sidiropoulos, “A Fast and Effective Multidimensional Scaling Approach

for Node Localization in Wireless Sensor Networks”, submitted to IEEE Trans. on Signal Pro-

cessing, July 2006.

3. N.D. Sidiropoulos, Z.-Q. Luo, “A Semidefinite Relaxation Approach to MIMO Detection for

High-order QAM Constellations”, IEEE Signal Processing Letters, to appear.
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4. Z.-Q. Luo, N.D. Sidiropoulos, P. Tseng, S. Zhang, “Approximation Bounds for Quadratic

Optimization with Homogeneous Quadratic Constraints”, SIAM Journal on Optimization, to

appear.

5. N.D. Sidiropoulos, T.N. Davidson, Z-Q (Tom) Luo, “Transmit Beamforming for Physical

Layer Multicasting”, IEEE Trans. on Signal Processing, 54(6, Part 1):2239-2251, June 2006.

6. G. Latsoudas, N.D. Sidiropoulos, “A Hybrid Probabilistic Data Association - Sphere De-

coding Detector for Multiple-Input Multiple-Output Systems”, IEEE Signal Processing Letters,

12(4):309-312, Apr. 2005.

7. G. Dimic, N.D. Sidiropoulos, “On Downlink Beamforming with Greedy User Selection:

Performance Analysis and a Simple New Algorithm”, IEEE Trans. on Signal Processing,

53(10):3857-3868, Oct. 2005.

Regarding conference papers (7 appeared/accepted; 2 in collaboration with Ananthram Swami,

ARL/Adelphi, MD):

1. E. Tsakonas, N.D. Sidiropoulos, A. Swami, “Time-Frequency Analysis Using Particle Fil-

tering: Closed-form Optimal Importance Function and Sampling Proceedure for a Single Time-

varying Harmonic”, in Proc. Nonlinear Statistical Signal Processing Workshop: Classical, Un-

scented, and Particle Filtering Methods, Sep. 13-15, 2006, Corpus Christi College, Cambridge,

U.K., to appear.

2. N.D. Sidiropoulos, A. Swami, A. Valyrakis, “Tracking a Frequency-Hopped Signal Using

Particle Filtering”, Proc. IEEE ICASSP 2006, May 14-19, 2006, Toulouse, France.

3. E. Karipidis, N.D. Sidiropoulos, Z.-Q. (Tom) Luo, “Convex Transmit Beamforming For

Downlink Multicasting to Multiple Co-channel Groups”, Proc. IEEE ICASSP 2006, May 14-19,

2006, Toulouse, France.
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4. E. Karipidis, N.D. Sidiropoulos, Z.-Q. (Tom) Luo, “Transmit Bemaforming to Multiple Co-

channel Multicast Groups”, in Proc. IEEE CAMSAP 2005, Dec. 12-14, 2005, Puerto Vallarta,

Mexico.

5. G. Latsoudas, N.D. Sidiropoulos, “A Two-stage FASTMAP-MDS Approach for Node Local-

ization in Sensor Networks”, in Proc. IEEE CAMSAP 2005, Dec. 12-14, 2005, Puerto Vallarta,

Mexico.

6. N.D. Sidiropoulos, T.N. Davidson, “Broadcasting with Channel State Information”, in Proc.

IEEE SAM 2004, July 18-21, Sitges, Barcelona, Spain.

7. G. Dimic, N.D. Sidiropoulos, “Low-Complexity Downlink Beamforming for Maximum Sum

Capacity”, in Proc. IEEE ICASSP 2004, May 17-21, Montreal, Quebec, Canada.

All journal and conference papers produced to date are included in the Annex.

Our research of course continues; in addition to the above, the following journal papers stem-

ming from our ICASSP06 conference paper are currently in progress

1. E. Karipidis, N.D. Sidiropoulos, Z.-Q. (Tom) Luo, “Far-field Multicast Beamforming of Uni-

form Linear Antenna Arrays is a Convex Problem”, in preparation for submission to IEEE Trans.

on Signal Processing.

2. E. Karipidis, N.D. Sidiropoulos, Z.-Q. (Tom) Luo, “Robust Transmit Beamforming for Mul-

ticasting”, in preparation for submission to IEEE Trans. on Signal Processing.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. Multiuser Transmit Beamforming

A.1 Sum capacity objective

We have considered two algorithms that capitalize on multiuser diversity to achieve a sig-

nificant fraction of the multi-antenna downlink sum capacity when the number of users, M ,

is greater than the number of antennas, N . We have analyzed the throughput performance of

the greedy zero-forcing dirty paper (gZF-DP) algorithm in independent Rayleigh fading, and

characterized the pdf’s of certain key parameters of interest. Determining the proper number

of samples required for accurate Monte Carlo estimates is a difficult issue without a baseline.

While the end result of gZF-DP performance analysis requires sequential numerical integration

and is admittedly cumbersome, it does provide such a baseline and thus corroborates the results

of Monte Carlo estimation. Also, numerical integration is simpler than Monte Carlo simulation

for a small number of transmit antennas. Furthermore, our analysis allowed us to establish that

at high SNR the throughput versus SNR slope of the gZF-DP algorithm is proportional to N .

We have also proposed another low-complexity algorithm, dubbed ZFS, which does not re-

quire DP coding at the transmitter. We have shown that the selection procedures of gZF-DP

and ZFS algorithms have the same complexity order, O(N3M), which is significantly smaller

than the complexity of the optimal algorithms when M >> N . We have evaluated the through-

put performance of the ZFS algorithm via simulations. The results show that for a realistic

number of transmit antennas, ZFS achieves a significant fraction of the throughput of gZF-DP

and sum capacity, at a low coding and on-line computation cost. The simulation results also

indicate that, at high SNR, ZFS achieves the same slope of throughput per dB of SNR as the
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capacity-achieving strategy based on the use of DP coding for known interference cancellation

and convex optimization.

Due to its simplicity, low complexity, and close to optimal performance, the proposed ZFS

method offers an attractive alternative to earlier DP-based methods when M >> N . ZFS is hard

to beat from a performance-complexity trade-off point of view. This is attributed to multiple user

selection diversity, which generalizes the concept of multiuser diversity, due to Tse, by selecting

to serve a group of users, versus a single user. We believe that ZFS has strong potential of being

implemented in actual systems (there is recent follow-up work by Morgan, Huang, of Bell Labs

/ Lucent Technologies, as well as European industry R&D groups).

A.2 Multicasting under Quality of Service (QoS) and Max-min Fair (MMF) objectives

We have taken a new look at the broadcasting/multicasting problem when channel state infor-

mation is available at the transmitter. We have proposed two pertinent problem formulations:

minimizing transmitted power under multiple minimum received power constraints, and max-

imizing the minimum received power subject to a bound on the transmitted power.We have

shown that both formulations are NP-hard optimization problems; however, their solution can

often be well approximated using semidefinite relaxation tools. We have explored the relation-

ship between the two formulations and also insights afforded by Lagrangian duality theory. In

view of i) our extensive numerical experiments with simulated and measured data, verifying that

semidefinite relaxation consistently yields good performance, ii) proof that the basic problem is

NP-hard, and thus approximation is unavoidable, and iii) corroborating motivation provided by

duality theory, we conclude that the approximate solutions provided herein offer useful designs

across a broad range of applications.
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The downlink beamforming problem was considered for the general case of multiple co-

channel multicast groups, under two design criteria: QoS, in which we seek to minimize the

total transmitted power while guaranteing a prescribed minimum SINR at all receivers; and a

fair objective, in which we seek to maximize the minimum received SINR under a total power

constraint. Both formulations contain single group multicast beamforming as a special case,

and are therefore NP-hard. Computationally efficient quasi-optimal solutions were proposed

by means of SDR and a combined randomization - multi-group multicast power control loop.

Extensive numerical results have been presented, using both simulated (i.i.d. Rayleigh) and

measured stationary outdoor wireless channel data, showing that the proposed algorithms yield

high quality approximate solutions at a moderate complexity cost. Interestingly, our numeri-

cal findings indicate that the solutions generated by our algorithms are often exactly optimal,

especially in the case of measured channels. In certain cases this optimality can be proven be-

forehand, and alternative convex reformulations of lower complexity have been constructed; in

other cases, a theoretical worst-case bound on approximation accuracy has been derived, and

shown to be tight.

Whereas multi-group multicast transmit beamforming under SINR constraints is NP-hard in

general, we have shown that, in the special case of Vandermonde steering vectors it is in fact a

semidefinite program, which can be efficiently solved. We have also considered robust beam-

forming solutions under channel uncertainty for the case of a single multicast group. For general

steering vectors, we have shown that exact solutions of the robust and non-robust versions of the

problem are related via a simple one-to-one scaling transformation. Since both problems are

NP-hard, this suggests an algorithm to generate a quasi-optimal solution for one given a quasi-

optimal solution for the other. In the important special case of Vandermonde steering vectors,
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we have shown that the robust version of the problem is convex as well. This robust solution can

be extended to the multi-group Vandermonde case.

B. Multiple Input Multiple Output Decoding

We have presented a two-stage hybrid PDA-SD algorithm for signal detection in MIMO sys-

tems. The basic idea is dimensionality reduction via hard decoding and cancellation of those

symbols that can be quickly and reliably detected via a single PDA stage. In the V-BLAST

scenario considered, simulations show that the proposed hybrid algorithm attains performance

close to SD, at a complexity close to PDA. The dimensionality reduction idea can also be applied

in conjunction with other variants of SD or SDR.

We have also proposed a new SDR approach for MIMO detection of high-order QAM constel-

lations. The new approach is the simplest one in the class of SDR detectors for high-order QAM:

its worst-case complexity is nearly cubic in the dimension of the transmitted symbol vector, and

independent of the constellation order for uniform QAM / affine in the constellation order for

non-uniform QAM. Under certain conditions, the new approach affords significant improve-

ments in SER over prior methods. Specifically, the Sphere Decoder (SD) family of detectors

exhibits a threshold behavior: it either works very well (for low-enough symbol vector dimen-

sion, order of the individual symbol constellation, and high-enough SNR) or it freezes. The

threshold between the two regimes depends on a combination of these three factors. When SD

works, it outperforms SDR in terms of complexity and SER performance. In difficult scenarios,

SDR offers an attractive alternative relative to earlier solutions.
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C. Acquiring Channel State Information: Node Localization

We have proposed a hybrid two-stage node localization algorithm that offers better accuracy

than existing alternatives of the same (and, in certain cases, even higher) complexity order. The

new algorithm employs Fastmap, coupled with judicious selection of anchor nodes that double

as pivots, to generate a computationally cheap yet sufficiently accurate initialization for gradi-

ent descent. The new algorithm is particularly attractive (in terms of the offered performance-

complexity trade-off) in the case of dense networks.

We also proposed using our adaptation of Fastmap as initialization for Costa’s algorithm. The

latter combination appears useful for sparse networks, in which case it attains better estimation

performance than Fastmap followed by steepest descent (SD), albeit at a higher complexity cost.

Our simulations indicate that, in the context of our present application, Fastmap+SD uniformly

outperforms the classical principal component analysis (PCA)-based multi-dimensional scaling

(MDS) algorithm, both in terms of complexity and in terms of estimation accuracy. We have also

derived the pertinent CRB for the log-normal multiplicative measurement noise model, which

was adopted for most of our simulations.

D. Synchronization, Doppler, and Intercept Issues: Particle Filtering Tools

We have developed three new particle filtering algorithms for tracking a frequency-hopped

complex sinusoid, based on a novel stochastic state-space formulation. The algorithms range

from a plain-vanilla version that uses the prior importance function, to a more advanced version

that employs the optimal importance function, and, finally, an improvement of the latter using

a problem-specific outer rejection loop. The two latter algorithms afford considerably better

performance - complexity trade-offs.
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We also revisited the important problem of tracking a single time-varying harmonic, whose

frequency and complex amplitude evolve according to a linear Gaussian separable AR(1) model.

A key difficulty in treating this model comes from the nonlinear measurement equation. For

this model, we derived the optimal importance function in closed form. This yields interesting

insights and opens up the possibility of designing particle filters that are more efficient than

generic ones. We also derived a procedure to sample from this optimal importance function,

using rejection and the concept of a dominating density. Our numerical experiments comparing

the resulting filter to standard particle filters and the CRB show that the proposed PF algorithm

has merits, particularly in terms of reducing the number of particles, and therefore memory

requirements as well.
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Abstract

The problem of transmit beamforming to multiple co-channel multicast groups is considered,

from two viewpoints: minimizing total transmission power while guaranteeing a prescribed minimum

signal-to-interference-plus-noise-ratio (SINR) at each receiver; and a “fair” approach maximizing the

overall minimum SINR under a total power budget. The core problem is a multicast generalization

of the multiuser downlink beamforming problem; the difference is that each transmitted stream

is directed to multiple receivers, each with its own channel. Such generalization is relevant and

timely, e.g., in the context of 802.16e wireless networks. The joint problem also contains single

group multicast beamforming as a special case. The latter (and therefore also the former) is NP-

hard. This motivates the pursuit of computationally efficient quasi-optimal solutions. It is shown

that Lagrangian relaxation coupled with suitable randomization / co-channel multicast power control

loops yield computationally efficient high-quality approximate solutions. For a significant fraction of

problem instances, the solutions generated this way are exactly optimal. Extensive numerical results

using both simulated and measured wireless channels are presented to corroborate our main findings.
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I. INTRODUCTION

The proliferation of streaming media (digital audio, video, IP radio), peer-to-peer services, large-

scale software updates, and profiled newscasts over the wireline Internet has brought renewed interest

in multicast routing protocols. These protocols were originally conceived and have since evolved

under the “wireline premise”: the physical network is a graph comprising point-to-point links that do

not interfere with each other at the physical layer. Today, multicast routing protocols operate at the

network or application layer, using either controlled flooding or minimum spanning tree access.

As wireless networks become ever more ubiquitous, and wireless becomes the choice for not only

the “last hop” but also suburban- and metropolitan-area backbones, wireless multicasting solutions are

needed to account for and exploit the idiosyncracies of the wireless medium. Wireless is inherently

a broadcast medium, where it is possible to reach multiple destinations with a single transmission;

different co-channel transmissions are interfering with one-another at the intended destination(s); and

links are subject to fading and shadowing, in addition to co-channel interference.

The broadcast advantage of wireless has of course been exploited since the early days of radio. The

interference problem was dealt with by allocating different frequency bands to the different stations,

and transmission was mostly isotropic or focused towards a specific service area.

Today, the situation with wireless networks is much different. First, transmissions need not be

“blind”. Many wireless network standards provision the use of transmit antenna arrays. Using baseband

beamforming, it is possible to steer energy in the direction(s) of the intended users, whose locations

(or, more generally, channels) can often be accurately estimated. Second, the push towards higher

capacity and end-user rates necessitates co-channel transmission which exploits the spatial diversity

in the user population (spatial multiplexing). Third, quality of service is an important consideration,

especially in wireless backhaul solutions like 802.16e. Finally, due to co-channel interference, wireless

multicasting cannot be dealt with in isolation, one group at a time; a joint solution is needed.

The problem of transmit beamforming towards a (single) group of users was first considered in

the Ph.D. thesis of Lopez [9], using the averaged (over all users in the group) received Signal to

Noise Ratio (SNR) as the design criterion. The solution boils down to a relatively simple eigenvalue

problem, but no SNR guarantee is provided this way: some users may get really poor SNR [11]. This

is not acceptable in multicasting applications, because it is the worst SNR that determines the common

information rate. Quality of service (providing a guaranteed minimum received SNR to every user)

and max-min-fair (maximizing the smallest received SNR) designs were first proposed in [10], [11],

where it was shown that the core problem is NP-hard, yet high-quality approximate solutions can be

obtained using relaxation techniques based on semidefinite programming (SDP). The latter is a class

of convex optimization problems which can be solved in polynomial time by powerful interior point

DRAFT July 4, 2006



3

methods.

As already mentioned, designing a transmit beamformer separately for each multicast group can

be far from optimal, due to inter-group interference. In this paper, we consider the joint design

problem under quality of service and max-min-fair criteria. In addition to semidefinite relaxation

ideas, our solutions entail a co-channel multicast power control component, which can be viewed as

a generalization of multiuser power control ideas for the cellular downlink (e.g., see [3] and references

therein). The multiuser downlink beamforming problem (e.g., see [1] and references therein) can be

viewed as a special case of our formulation, where each multicast group consists of a single receiver.

A carefully designed suite of numerical results is used to demonstrate the efficacy of our designs,

including extensive results using measured wireless channel data.

II. DATA MODEL AND PROBLEM STATEMENT

Consider a wireless scenario incorporating a single transmitter with N antenna elements and M

receivers, each with a single antenna. Let hi denote the N × 1 complex vector that models the

propagation loss and phase shift of the frequency-flat quasi-static channel from each transmit antenna

to the receive antenna of user i ∈ {1, . . . , M}. Let there be a total of 1 ≤ G ≤ M multicast

groups, {G1, . . . ,GG}, where Gk contains the indices of receivers participating in multicast group

k, and k ∈ {1, . . . , G}. Each receiver listens to a single multicast; thus Gk ∩ Gl = ∅, l 6= k,

∪kGk = {1, . . . , M}, and, denoting Gk := |Gk|,
∑G

k=1 Gk = M .

Let wk denote the beamforming weight vector applied to the N transmitting antenna elements to

generate the spatial channel for transmission to group k (see Fig. 1). Then the signal transmitted by

the antenna array is equal to
∑G

k=1 wH
k sk(t), where sk(t) is the temporal information-bearing signal

directed to receivers in multicast group k. Note that the above setup includes the case of broadcasting

(a single multicast group, G = 1) [11], as well as the case of individual information transmission to

each receiver (G = M ) by means of spatial multiplexing (see, e.g., [1]). If each sk(t) is zero-mean,

temporally white with unit variance, and the waveforms {sk(t)}G
k=1 are mutually uncorrelated, then

the total power radiated by the transmitting antenna array is equal to
∑G

k=1 ‖wk‖2
2.

The joint design of transmit beamformers can then be posed as the problem of minimizing the

total radiated power subject to meeting prescribed SINR constraints γi at each of the M receivers

Q :

min
{wk∈CN}G

k=1

G∑

k=1

‖wk‖2
2

s.t. : |wH
k hi|2P

l6=k |wH
l hi|2+σ2

i
≥ γi, ∀i ∈ Gk, ∀k ∈ {1, . . . , G}.

July 4, 2006 DRAFT



4

Problem Q contains the associated broadcasting problem (G = 1) as a special case; from this and

[11], it immediately follows that

Claim 1: Problem Q is NP-hard.

This motivates (cf. [4]) the pursuit of sensible approximate solutions to problem Q. 1

III. RELAXATION

Towards this end, let us define Qi := hihH
i and Xk := wkwH

k , and note that |wH
k hi|2 =

hH
i wkwH

k hi = trace(hH
i wkwH

k hi) = trace(hihH
i wkwH

k ) = trace(QiXk). Note that Xk = wkwH
k

for some wk ∈ CN if and only if Xk º 0 and rank(Xk) = 1. It follows that problem Q can be

equivalently reformulated as

min
{Xk∈CN×N}G

k=1

G∑

k=1

trace(Xk)

s.t. : trace(QiXk) ≥ γi

∑

l 6=k

trace(QiXl) + γiσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},

Xk º 0, ∀k ∈ {1, . . . , G},

rank(Xk) = 1, ∀k ∈ {1, . . . , G},

where the fact that the terms in the denominator are all nonnegative has also been taken into account.

Dropping the last G rank-one constraints, which are nonconvex, we arrive at the following relaxation

of problem Q

Qr :

min
{Xk∈CN×N}G

k=1, {si∈R}M
i=1

G∑

k=1

trace(Xk)

s.t. : trace(QiXk)− γi

∑

l 6=k

trace(QiXl)− si = γiσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},

si ≥ 0, ∀i ∈ {1, . . . ,M},

Xk º 0, ∀k ∈ {1, . . . , G},

where M nonnegative real “slack” variables si have been introduced, in order to convert the first M

linear inequality constraints to M linear equality constraints, plus M nonnegativity constraints.

1Note that other special cases of problem Q are not NP-hard: e.g., the multiuser downlink beamforming problem (G = M )

is a Second Order Cone Program (SOCP) [1]; see also [7] for a restriction on the channel vectors that enables convex

reformulation and thereby efficient solution of the problem.
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Next, we seek to express the equality constraints as linear combinations of the unknown vector

x = [vec(X1)T · · · vec(XG)T ]T , which is formed by stacking the columns of the Xk matrices.

Towards this end, the G× 1 vectors

ai = (γi + 1)ek(i) − γi1G, ∀i ∈ {1, . . . , M},

are introduced, whose k(i)-th element is equal to one, whereas all others are set to −γi. Here, ek(i)

is the G × 1 vector indicating the multicast group k(i) that user i belongs to, and 1G is the G × 1

all-ones vector. Using ai we can recast the equality constraints as

[ai ⊗ vec(QT
i )]Tx− si = γiσ

2
i , ∀i ∈ {1, . . . , M},

where ⊗ denotes the Kronecker product. Finally, the relaxed problem Qr is written as

Qr :

min
x∈CGN2 , {si∈R}M

i=1

[1G ⊗ vec(IN )]T vec(x)

s.t. : [ai ⊗ vec(QT
i )]Tx− si = γiσ

2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},

si ≥ 0, ∀i ∈ {1, . . . , M}

Xk º 0, ∀k ∈ {1, . . . , G}.

Here, IN is the identity matrix of size N ×N . Problem Qr is a Semi-Definite Program (SDP), ex-

pressed in the primal standard form used by SDP solvers, such as SeDuMi [12]. This SDP has G matrix

variables of size N×N , and M linear constraints. Interior point methods will take O(
√

GN log(1/ε))

iterations, with each iteration requiring at most O(G3N6 +MGN2) arithmetic operations, where the

parameter ε represents the solution accuracy at the algorithm’s termination. SeDuMi uses interior

point methods to solve such SDP problems efficiently. Actual runtime complexity will usually scale

far slower with G, N , M than this worst-case bound.

IV. OBTAINING AN APPROXIMATE SOLUTION TO PROBLEM Q
Problem Q may not admit a feasible solution (counter-examples may be easily constructed), but if it

does, the aforementioned approach will yield a solution to problem Qr. Due to relaxation, this solution

will not, in general, consist of rank-one blocks. In order to obtain a high-quality approximate solution

of problem Q, the concept of randomization can be employed to generate candidate beamforming

vectors in the span of the respective transmit covariance matrices. The main difference relative to

the simpler broadcast case (G = 1) considered in [11], is that here we cannot simply “scale up”

the candidate beamforming vectors generated during randomization to satisfy the SINR constraints
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of problem Q. The reason is that, in contrast to [11], we herein deal with an interference scenario,

and boosting one group’s beamforming vector also increases interference to nodes in other groups.

Whether it is feasible to satisfy the constraints for a given set of candidate beamforming vectors is

also an issue here. Let ak,i := |wH
k hi|2 denote the signal power received at receiver i from the stream

directed towards users in multicast group k. Let βk := ‖wk‖2
2, and pk denote the power boost (or

reduction) factor for multicast group k. Then the following Multi-Group Power Control (MGPC)

problem emerges in converting candidate beamforming vectors to a candidate solution of problem Q.

MGPC :

min
{pk∈R}G

k=1

G∑

k=1

βkpk

s.t. : pkak,iP
l6=k plal,i+σ2

i
≥ γi,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},

pk ≥ 0, ∀k ∈ {1, . . . , G}.

As in Section III, taking advantage of the fact that the terms in the denominator are all nonnegative

and introducing M nonnegative real “slack” variables si, problem MGPC can be equivalently

reformulated as

MGPC :

min
{pk∈R}G

k=1, {si∈R}M
i=1

G∑

k=1

βkpk

s.t. : pkak,i − γi

∑

l 6=k

plal,i − si = γiσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},

pk ≥ 0, ∀k ∈ {1, . . . , G},

si ≥ 0, ∀i ∈ {1, . . . , M}.

Towards transforming the MGPC problem formulation to the primal standard form used by convex

optimization problem solvers, such as SeDuMi, we denote β = [β1, . . . , βG]T , p = [p1, . . . , pG]T ,

and αi = [α1,i, . . . , αG,i]T . We can now recast problem MGPC as
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MGPC :

min
p∈RG, {si∈R}M

i=1

βTp

s.t. : [ai ¯αi]Tp− si = γiσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G} ,

pk ≥ 0, ∀k ∈ {1, . . . , G} ,

si ≥ 0, ∀i ∈ {1, . . . , M} ,

where ai are the G×1 vectors introduced in Section III and ¯ stands for element-wise multiplication

(the Hadamard product). Problem MGPC is a Linear Program (LP) with G nonnegative variables

and M linear inequality constraints. Interior point methods can either find the problem infeasible or

generate an ε-optimal solution in O(
√

G log(1/ε)) iterations, each requiring at most O(G3 + MG)

arithmetic operations. SeDuMi can be used to find its optimum solution. Note that SeDuMi will

also yield an infeasibility certificate in case the MGPC problem is not solvable for a particular

beamforming configuration. This is useful to determine the feasibility of a candidate beamforming

configuration.

For G = M (independent information transmission to each receiver), problem Qr is in fact

equivalent to (not a relaxation of) problem Q, see [1]; likewise, problem MGPC reduces to the

well-known multiuser downlink power control problem, which can be solved using simpler means

(e.g., [3]): matrix inversion and iterative descent algorithms. In this special case, (in)feasibility can

be determined from the spectral radius of a certain “connectivity” matrix. Similar simplifications

for the general instance of MGPC are perhaps possible, but appear highly non-trivial. At any rate,

interior point LP routines are very efficient, hence this is not a major issue. The overall algorithm

for obtaining an approximate solution to problem Q can be summarized as follows:

1) Relaxation: Solve problemQr, using a SDP solver (e.g. SeDuMi). Denote the solution {Xk}G
k=1.

2) Randomization / Scaling Loop: For each k, generate a vector in the span of Xk, using the

Gaussian randomization technique (randC) in [11]. If, for some k, rank(Xk) = 1, then use

the principal component instead. Next, feed the resulting set of candidate beamforming vectors

{wk}G
k=1 into problem MGPC and solve it using SeDuMi. If the particular instance of MGPC

is infeasible or yields a larger MGPC objective than previously checked candidates, discard

the proposed set of candidate beamforming vectors; else, record the solution and associated

objective value.

The quality of approximate solutions to problem Q generated this way can be checked against the

lower bound on transmit power obtained in solving problem Qr. This bound can be further motivated
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from a duality perspective, as in [11]; that is, the aforementioned relaxation lower bound is in fact

the tightest lower bound on the optimum of problem Q attainable via Lagrangian duality [2]. This

follows from arguments in [13] (see also the single-group case in [11]), due to the fact that problem

Q is a quadratically constrained quadratic program.

V. JOINT MAX-MIN FAIR BEAMFORMING

In this section, we consider the related problem of maximizing the minimum SINR, received by

any of the M intended users irrespective of the multicast group they belong to, subject to an upper

bound P on the total transmitted power. This problem formulation is a generalization of the respective

max-min fair transmit beamforming problem towards a single multicast group, which was considered

in [11]. The key difference is that here we seek to maximize a SINR, instead of a SNR; that is, the

beamforming vectors, which are to be optimized, appear in the numerator as well as in the denominator

of the objective function. Specifically, the joint max-min fair (JMMF) transmit beamforming design

is formulated as

F :

max
{wk∈CN}G

k=1

min
k∈{1,... ,G}

min
i∈Gk

|wH
k hi|2∑

` 6=k |wH
` hi|2 + σ2

i

s.t. :
G∑

k=1

‖wk‖2
2 ≤ P.

Since problem F contains as a special case the associated broadcasting problem (G = 1), it follows

from [11] that

Claim 2: Problem F is NP-hard.

The inequality constraint on the total transmit power will be met with equality at an optimum.

Otherwise, one could multiply all beam vectors by a constant c > 1, thereby increasing the minimum

SINR (note that σ2
i > 0). We may therefore focus on the equality constrained problem and denote

this as F from now on.

Claim 2 motivates the pursuit of sensible approximate solutions to the JMMF problem. Towards

this end, we introduce an auxiliary positive real variable t and rewrite the (equality constrained)
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JMMF downlink beamforming problem F as follows

max
{wk∈CN}G

k=1, t∈R
t

s.t. :
|wH

k hi|2∑
` 6=k |wH

` hi|2 + σ2
i

≥ t,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

‖wk‖2
2 = P, and t ≥ 0.

Then, using the matrices Qi and Xk introduced in Section III, we can further recast problem F as

max
{Xk∈CN×N}G

k=1, t∈R
t

s.t . :
trace(QiXk)∑

` 6=k trace(QiX`) + σ2
i

≥ t,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

trace(Xk) = P,

rank(Xk) = 1, ∀k ∈ {1, . . . , G},

Xk º 0, ∀k ∈ {1, . . . , G}, and t ≥ 0.

Finally, dropping the nonconvex rank constraints we obtain the following relaxation of the original

problem F

Fr :

max
{Xk∈CN×N}G

k=1, t∈R
t

s.t. : trace(QiXk)− t


∑

` 6=k

trace(QiX`) + σ2
i


 ≥ 0,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

trace(Xk) = P,

Xk º 0, ∀k ∈ {1, . . . , G}, and t ≥ 0,
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where we have also taken into account the fact that the terms in the denominators of the first

M inequality constraints are all nonnegative. Problem Fr has a linear objective function, 1 linear

equality constraint, G positive semidefinite constraints, and 1 nonnegativity constraint; however, it is

nonconvex, due to the first M nonlinear inequality constraints.

A solution to the relaxed problem Fr can be found by means of bisection over SDP problems, as

explained next. Let t∗ be the optimum value of problem Fr. A feasible solution of Fr that is at most

ε > 0 away from t∗ can be generated as follows. Let [L,U ] be an interval containing t∗. We begin by

setting L = 0, U = P min
i∈{1,... ,M}

‖hi‖2
2

σ2
i

, where the lower bound follows from non-negativity of t∗ and

the upper bound follows from the Cauchy-Schwartz inequality. Given [L,U ], the convex feasibility

problem FP , shown in the box below, is solved at the midpoint t = (L + U)/2 of the interval. If

problem FP is feasible for the given choice of t, we set L := t; otherwise U := t. Thus, in each

iteration the interval is halved. Repeating until U − L ≤ ε requires only Niter = dlog2((U − L)/ε)e
iterations. In practice, 10-12 iterations are usually enough for typical problem setups.

The convex feasibility problem FP is formulated, for any choice of the positive real t, as

FP :

find v

s.t. : trace(QiXk)− t
∑

` 6=k

trace(QiX`)− si = tσ2
i ,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

trace(Xk) = P,

Xk º 0, ∀k ∈ {1, . . . , G},

si ≥ 0, ∀i ∈ {1, . . . , M},

where M nonnegative real “slack” variables si have been introduced to convert the linear inequality

constraints to linear equality plus nonnegativity constraints. Here, v ∈ RM × CGN2
denotes the

variable vector v = [sT vec(X1)T · · · vec(XG)T ]T , where the vector s = [s1 · · · sM ]T contains the

“slack” variables. The feasibility problem FP is comprised of an objective function, set to zero, and

M+1 linear equality constraints, G positive semidefinite constraints, and M nonnegativity constraints.

Hence, it is a SDP problem expressed in the standard primal form. Thus, for each iteration of the

aforementioned bisection algorithm, problem FP can be efficiently solved by SDP solvers. Similar

to problem Qr, this SDP feasibility problem has G matrix variables of size N ×N , and M +1 linear

constraints. So computing an ε-feasible solution by an interior point method will have an overall
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iteration count of O(
√

GN log(1/ε)), while each iteration has a complexity of O(G3N6 + MGN2).

The use of SeDuMi in the algorithm is convenient, because it does not only yield a solution to

problem FP when the latter is feasible, but it also provides a certificate of infeasibility otherwise.

As with problem Qr, actual runtime complexity will usually scale far slower with G, N , M than

this worst-case bound.

When the algorithm terminates, the solution vector v, obtained by the last feasible iteration, contains

the approximate solution to the relaxed problem Fr, namely the blocks {Xk}G
k=1. The corresponding

(approximate) optimal value of problem Fr is an upper bound on the guaranteed received SINR

by all users, that can be achieved with total transmit power P . This bound can only be met in the

case when all blocks Xk are rank-one, so that their principal components can be chosen as optimum

beamforming vectors wk. Due to the relaxation of the rank constraints, this is generally not true.

Thus, post-processing of the relaxed solution is needed when the solution matrices {Xk}G
k=1 are

not all rank-one, so as to yield an approximate solution to the original joint max-min fair problem

F . This can be accomplished by using a combined randomization - joint power control procedure,

similar to the one described in Section IV. Specifically, Gaussian randomization (e.g., see [11]) may

be used in a first step to create candidate sets of beamforming vectors {wk}G
k=1 in the span of the

respective transmit covariance matrices. In a second step, the available transmit power P is allocated

to the candidate beamforming vectors, by adjusting the power boost (or back-off) factors pk for

each multicast group. The set of (pk,wk) pairs which maximizes the minimum received SINR is

then chosen among all feasible solutions generated this way. Given a candidate set of beamforming

vectors, the transmit power can be optimally allocated by solving the following problem

MGPC′ :

max
{pk∈R}G

k=1

min
k∈{1,... ,G}

min
i∈Gk

pkαk,i∑
` 6=k p`α`,i + σ2

i

s.t. :
G∑

k=1

βkpk = P,

pk ≥ 0, ∀k ∈ {1, . . . , G},

where, as introduced in Section IV, βk = ‖wk‖2
2 and αk,i denotes the signal power received by user

i from the stream directed towards users in multicast group k. Introducing a real positive auxiliary
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variable γ, we can recast problem MGPC′ as

max
{pk∈R}G

k=1, γ∈R
γ

s.t . :
pkαk,i∑

` 6=k p`α`,i + σ2
i

≥ γ,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

βkpk = P,

pk ≥ 0, ∀k ∈ {1, . . . , G}, and γ ≥ 0.

The bisection algorithm, described earlier in this section, can be used again to obtain a solution to

problem MGPC′. The search interval is bounded below by L = 0, as before. However, we may now

further restrict the upper bound U to the optimal value obtained for the relaxed problem Fr. The

convex feasibility problem, which is to be solved in each iteration for a given choice of the positive

real γ, is

FP ′ :

find v′

s.t. : αk,ipk − γ
∑

` 6=k α`,ip` − si = γσ2
i ,

∀k ∈ {1, . . . , G}, ∀i ∈ Gk,

G∑

k=1

βkpk = P,

pk ≥ 0, ∀k ∈ {1, . . . , G},

si ≥ 0, ∀i ∈ {1, . . . , M},

where v′ ∈ RM+G denotes the variable vector v′ = [sT pT ]T . Problem FP ′ is a linear feasibility

problem with G nonnegative variables and M + 1 linear inequality constraints. An interior point

method can generate either an ε-feasible solution in O(
√

G log(1/ε)) iterations, each requiring at most

O(G3 + MG) arithmetic operations, or return a dual certificate showing the problem is infeasible.

When the bisection algorithm terminates, the solution vector v′ obtained in the last feasible iteration

contains the boost / attenuation factors which optimally allocate the available transmit power among

the G multicast groups, for the given set of candidate beamforming vectors. If this set of (pk,wk) pairs
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yields larger worst-case received SINR than previously checked sets, then it is recorded; otherwise it

is discarded.

Using the algorithm described so far, the cost of finding an approximate solution to the joint max-

min fair beamforming problem is that of solving Niter SDP and NrandN
′
iter LP feasibility problems,

where N ′
iter are the iterations of the bisection executed for the solution of the MGPC′ problem.

The quality of the final approximate solution can be measured by the ratio of the optimal value

of problem Fr (which, as mentioned already, is actually an upper bound) to the maximum attained

optimal value of problem MGPC′.

VI. NUMERICAL RESULTS

A. QoS Approach

In Sections III and IV we have derived a two-step algorithm to yield, in polynomial time, an

approximate solution to the joint QoS multicast beamforming problemQ. The first step of the proposed

algorithm consists of a relaxation of the original problem Q to problem Qr. The original problem Q
may or may not be feasible; if it is, then so is problem Qr. If Qr is infeasible, then so is Q. The

converse is generally not true; i.e., if Qr is feasible, Q need not be feasible. In order to establish

feasibility of Q in this case, the randomization - MGPC loop should yield at least one feasible

solution. This is most often the case, as will be verified in the sequel. If the randomization - MGPC
loop fails to return at least one feasible solution, then the (in)feasibility of Q cannot be determined.

There is, therefore, a relatively small proportion of problem instances for which (in)feasibility of Q
cannot be decided using the proposed approach. It is evident from the above discussion that feasibility

is a key aspect of problem Q and its proposed solution via problem Qr and the randomization -

MGPC loop. Feasibility depends on a number of factors; namely, the number of transmit antenna

elements N , the number and the populations of the multicast groups, G and Gk respectively, the

channel characteristics hi, the channel noise variances σ2
i , and finally the desired receive SINR

constraints γi.

Beyond feasibility, there are two key issues of interest. The first has to do with cases for which the

solution to the relaxed problem Qr yields an exact optimum of the original problem Q. This happens

when the N ×N solution blocks Xk, k ∈ {1, · · · , G}, turn out all being rank-one. In this case, the

associated principal components solve optimally the original problem Q, i.e., in such a case Qr is

not a relaxation after all. It is interesting to find the frequency of occurrence of such an event, whose

benefit is twofold: the problem is solved not only optimally, but also at a smaller complexity, since the

randomization step and the repeated solution of the ensuing MGPC problem is avoided. The second

issue of interest has to do with the quality of the final approximate solution to problem Q, in those

cases where a feasible solution can be found using the proposed two-step algorithm. As in [11], a
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practical figure of merit for the quality of the final approximate solution (set of beamforming vectors

and power scaling factors) is the ratio of the total transmitted power corresponding to the approximate

solution over
∑G

k=1 trace(Xk) - the lower bound generated from the solution of the relaxed problem

Qr.

We first consider the standard i.i.d. Rayleigh fading model, i.e., the elements of the N × 1 channel

vectors hi, ∀i ∈ {1, . . . , M} are i.i.d. circularly symmetric complex Gaussian random variables

of variance 1. For each scenario considered, 300 different channel snapshots are randomly created

according to the aforementioned model and fed to the proposed algorithm. The results presented in this

subsection are obtained by averaging over 300 Monte-Carlo runs, using 300 Gaussian randomization

samples in each run. Tables I, II, and III summarize these results, for N (number of transmit antenna

elements) set to 4, 6, and 8 respectively. The proposed algorithm is tested for a variety of choices for

M (the total number of single-antenna receivers) and G (the number of multicast groups), which index

the rows in the tables (columns 1 and 2, respectively). The users are considered to be evenly distributed

among the multicast groups, i.e., Gk = M/G, ∀k ∈ {1, . . . , G}. For each such configuration, the

QoS downlink beamforming problem is solved for increasing values (in the 6-20 dB range, see column

3) of the received SINR constraints (same for all users), provided that there exist channel instances

for which problem Qr is feasible. The noise variance is set to σ2 = 1 for all channels. The percentage

of the 300 Monte-Carlo runs for which Qr is feasible is shown in column 4. Columns 5 reports the

percentage of feasible solutions to problem Qr, which yield exact solutions to problem Q. This is

calculated as the percentage of problem instances for which all Xk in the solution of Qr turn out

having rank (essentially) equal to one (defined by the second largest eigenvalue being smaller than

10−3 of the sum of all eigenvalues). Column 6 reports the percentage of problem instances for which,

once a feasible solution to problem Qr is found, the proposed algorithm’s second step, i.e., the ensuing

randomization - MGPC loop, yields at least one feasible solution for the original problem Q. The

next two columns (7 and 8), hold the mean and standard deviation of the quality measure, defined

in Section IV as the ratio of transmitted power corresponding to the final approximate solution over

the lower bound obtained from the SDR solution. This ratio equals one when rank relaxation is exact

(not a relaxation after all), and the reported statistics depend on the frequency (see column 5) of

this event. In order to obtain additional insight in the quality of the approximation step, conditional

statistics are also reported in the last two columns (9 and 10) after excluding exact optimum solutions

from the calculation.

An initial comment, regarding the feasibility of the relaxed problem Qr, is that in all configurations

considered, the higher the target SINR, the less likely it is that Qr is feasible, which is intuitive.

Furthermore, Qr is getting more difficult to solve as the number G of multicast groups increases and/or
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as more (randomly generated) users per multicast group are added, since in either case interference

is higher. Finally, it is seen that increasing the number of transmit antennas (N ) improves service, as

expected: higher receive SINR can be attained by more users in more multicast groups.

The most interesting observation, concerning the percentage of problems Qr for which the relax-

ation is tight, is that it increases as the number of users per multicast group decreases; percentages

are significant especially when the number of users per group is smaller or equal to the number of

transmit antennas. This can be seen in two ways: either by holding the number of groups fixed while

decreasing their populations, or by fixing the total number of users and distributing them in more

multicast groups. Trying to interpret this fact, note that in both cases the problem is pushed towards

the multiuser (independent information) downlink problem, where each user forms a multicast group.

The latter is known to be convex, and the associated SDP relaxation has been shown to be tight [1].

In addition, the Qr optimality percentage also increases with target SINR. It seems as if rank-one

solutions are more likely when operating close to the infeasibility boundary. In some scenarios, Qr

consistently yields an exact solution of Q. That is, the Xk blocks are all consistently rank-one. In

this case, no further randomization is needed - the principal components of the extracted blocks are

the optimal beamformers. More on this can be found in [7].

As far as the approximation step of the proposed algorithm is concerned, we can distinguish

two cases. In most of the scenarios considered, the number of users per multicast group was kept

smaller or equal to the number of transmit antenna elements, so that a realistic value of the receive

SINR could be guaranteed, for a significant fraction of the different channel instances. There, the

randomization - MGPC loop yields a feasible solution with a probability higher than 90% in most

cases where Qr is feasible; this solution entails transmission power that is under two times (3 dB

from) the possibly unattainable lower bound, on average. The actual numbers for each configuration

depend on the number of the Gaussian randomization samples; 300 have proved adequate for most

configurations. However, when a relatively low target SINR is to be guaranteed to a number of users

per group larger than the number of antennas, the feasibility of the approximation decreases and the

power penalty increases. This can be appreciated by looking at the lowest sub-matrices of Tables I–

III. Simulations are repeated for these configurations using 1000 Gaussian random samples. The

results are summarized in Table IV, where an extra column has been added at the front, indicating

the number N of transmit antenna elements. A small improvement is observed in the quality of the

approximation; but it is still inadequate for the last configuration.
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B. Max-min-fair Approach

In this subsection we assess the performance of the algorithm derived in Section V for the JMMF

downlink multicast beamforming problem. As in the previous subsection, the standard i.i.d. Rayleigh

fading model is used for Monte-Carlo simulations. Table V summarizes the results obtained using the

proposed algorithm for 300 Monte-Carlo runs and 1000 Gaussian randomization samples each. The

value of the available transmit power P is set to 1000 for all the reported simulation results. Note at

this point that, contrary to the single-group multicasting scenario [11], the optimization problem in

the general case of multiple multicast groups is interference-limited; hence, it depends on the value

of P . Specifically, if the same problem is solved for two different values of P , the designed beams

will have the same shape, but the power allocation, i.e. the solution of the MGPC′ problem will

differ.

Simulations are conducted for three different choices (4, 6, and 8) of the number N of transmit

antenna elements and a variety of choices for the number of receiving single-antenna mobile users

M , shown respectively in the first and the second column of the table. The users are considered

to be evenly distributed among the G multicast groups; their number is stored in the third column.

The fourth column reports the percentage of the Monte-Carlo runs for which all solution blocks Xk

of the relaxed problem Fr are essentially rank-one. As mentioned already, when this is the case,

the principal components of the blocks optimally solve the original joint max-min-fair problem, i.e.

problem Fr is equivalent to and not a relaxation of problem F ; hence, there is no need for the

algorithm’s second step (randomization - MGPC′ loop). It is evident that this case occurs quite

frequently, with a frequency which drops as the number of users and the number of multicast groups

increases.

The next two columns (fifth and sixth) of Table V hold the average value (over all Monte-Carlo

runs) and the standard deviation, respectively, of the ratio of the optimal value of problem Fr to the

maximum attained optimal value of problem MGPC′. This is a measure of the quality of the overall

solution obtained using our proposed approach. The final two columns (seventh and eighth) report the

same statistics, but only for the Monte-Carlo runs for which the relaxation is not essentially tight, for

additional insight on the quality of the approximation step. It is observed that the minimum achieved

SINR is usually very close (in the mean) to the upper bound calculated by the relaxed SDP problem

F ; thus, the approximation step yields high quality solutions. Compared with the respective results

for the single multicast group case [11], the multi-group algorithm consistently performs better. In

addition, the quality of the approximation becomes better (i.e., the mean of the ratio drops) as a given

number of users is distributed among a larger number of multicast groups (e.g., see the case of 12

users, divided into 2, 3, and 4 groups). The interpretation given for the QoS formulation, that the
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problem is pushed towards the (convex) multiuser downlink problem, applies here, too.

Regarding practical execution time, the SDP feasibility problem Fr is solved in about 0.1 sec,

on a typical desktop PC, for the cases considered. The variation of this execution time is almost

negligible for the tested variation of the values M and G (users and groups, respectively). However,

an approximately linear dependence of the execution time on the number of transmit antennas N

has been observed. The LP feasibility problem is solved in approximately 0.05 sec, irrespective of

the scenario considered. Thus, in practice the algorithm needs approximately 1 + 0.5Nrand sec (for

Niter ≈ N ′
iter ≈ 10), when the relaxation is not tight.

C. Experiments with Measured Channel Data

The performance of the proposed multicast beamforming algorithms was also tested on measured

channel data courtesy of iCORE HCDC Lab, University of Alberta in Edmonton, Canada. Measure-

ments were carried out using a portable 4 × 4 multiple-input multiple-output (MIMO) testbed that

operates in the 902–928 MHz (ISM) band. The transmitter (Tx) and the receiver (Rx) were equipped

with antenna arrays, each comprising four vertically polarized dipole antennas spaced λ/2 (≈ 16

cm) apart. The chip rate used for sounding was low enough to safely assume that the channel is not

frequency selective. More details on the testbed configuration and the procedure used to estimate the

channel gains of the MIMO channel matrix can be found in [5]. Datasets and a detailed description of

many measurement campaigns in typical propagation environments are available at the iCORE HCDC

Lab website (http://www.ece.ualberta.ca/∼mimo/). The most pertinent scenario for our purposes is

the stationary outdoor one, called Quad and illustrated in Figure 2. Quad is a 150 by 60 meters

lawn surrounded by buildings with heights from approximately 15 to 30 meters. The Tx location was

fixed, whereas the Rx was placed in 6 different locations (no measurements are actually provided for

location 4) as indicated in Figure 2. For every Rx location, 9 different measurements were taken by

shifting the Rx antenna array on a 3× 3 square grid with λ/4 spacing. Each measurement contains

about 100 4 × 4 channel snapshots, recorded 3 per second; thus for each location there are about

900 MIMO channel gain matrices available. We form multicast groups by considering each receive

antenna at each location as a separate terminal, and grouping terminals in 1–3 locations into one

multicast group. The results reported in Tables VI–XII and XIII, for the QoS and the JMMF problem

formulations, respectively, are obtained by averaging over the 900 channel instances. Channel gains

are normalized before use, dividing by the average channel amplitude for the respective configuration.

300 Gaussian samples are employed in the randomization / MGPC loop. The main findings regarding

performance of our algorithms applied to the measured channel data can be summarized as follows:

• For 2 multicast groups and number of users per group equal to the number of Tx antennas (N = 4),
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the relaxation Q → Qr is tight very frequently (70–100%) and the power penalty paid by the

approximation step very small. These hold irrespective of the distribution of each group’s users in 1,

2, or even 3 locations (see Tables VI, VII, and VIII, respectively).

• For 2 multicast groups of 6 (or 8) users each, evenly distributed in 2 locations, the relaxation Q →
Qr is tight for more than half of the occasions (see Tables IX, and XI). There exist channel instances

for which SINR up to 14 (or 12) dB can be guaranteed; such high SINR values are unattainable

under the corresponding i.i.d. Rayleigh fading scenario. The quality of approximation is good, even

though the number of user per group is larger than the number of transmit antenna elements.

• When 6 users in each of 2 multicast groups are evenly distributed in 3 locations, the relaxation

Q → Qr is tight less frequently (< 80%), and the problem is feasible only up to about 10 dB (see

Table X). The feasibility of the approximation step can drop < 80%.

• For 3 multicast groups (see Table XII) of 3 co-located users each, the relaxation Q → Qr is almost

always tight (> 90%) and feasible up to 10 dB of prescribed SINR. For 4 users per group it becomes

infeasible for SINR values larger than about 8 dB.

• When the number of users per multicast group is small, the relaxation F → Fr in the JMMF

formulation is tight in a high percentage of cases (see Table XIII). This percentage drops as the

number of users per multicast group increases. In all scenarios considered, the proposed algorithm

yields high quality approximate solutions.

VII. CONCLUSIONS

The downlink beamforming problem was considered for the general case of multiple co-channel

multicast groups, under two design criteria: QoS, in which we seek to minimize the total transmitted

power while guaranteing a prescribed minimum SINR at all receivers; and a fair objective, in

which we seek to maximize the minimum received SINR under a total power constraint. Both

formulations contain single group multicast beamforming as a special case, and are therefore NP-hard.

Computationally efficient quasi-optimal solutions were proposed by means of SDR and a combined

randomization - MGPC loop. Extensive numerical results have been presented, using both simulated

(i.i.d. Rayleigh) and measured stationary outdoor wireless channel data, showing that the proposed

algorithms yield high quality approximate solutions at a moderate complexity cost. Interestingly, our

numerical findings indicate that the solutions generated by our algorithms are often exactly optimal,

especially in the case of measured channels. In certain cases this optimality can be proven beforehand,

and alternative convex reformulations of lower complexity can be constructed; see [7] for further

details. In other cases, a theoretical worst-case bound on approximation accuracy can be derived, and

shown to be tight; on this issue, see [8].
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Fig. 1. Co-channel multicast beamforming concept (note that groups need not be spatially clustered).
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Fig. 2. Sample wireless channel measurement scenario from http://www.ece.ualberta.ca/∼mimo/

TABLE I

MC SIMULATION RESULTS (RAYLEIGH); QOS TX BEAMFORMING; N = 4 TX ANTENNAS, 300 RANDOMIZATIONS

feas. opt. feas. all solutions appr. solutions

M G SINR Qr Qr appr. mean std mean std

6 3 6 89.67 99.63 100 1.0000 0.0005 1.0079 0

6 3 8 70.33 100 - 1 0 - -

6 3 10 45.33 100 - 1 0 - -

6 3 12 27 100 - 1 0 - -

6 3 14 14 100 - 1 0 - -

6 3 16 7 100 - 1 0 - -

8 2 6 98.33 79.66 98.31 1.0550 0.1710 1.2902 0.2950

8 2 8 90.67 83.46 98.90 1.0838 0.3788 1.5366 0.8301

8 2 10 73.33 83.18 98.18 1.1935 1.8118 2.2668 4.5446

8 2 12 52 85.90 98.72 1.2018 2.1247 2.5542 5.8430

8 2 14 32 88.54 100 1.0128 0.0593 1.1113 0.1462

8 2 16 16.33 89.80 95.92 1.0426 0.1892 1.6679 0.4433

8 2 18 9.33 92.86 100 1.0154 0.0669 1.2162 0.1847

8 2 20 3 88.89 100 1.0543 0.1628 1.4884 0

9 3 6 5.67 100 - 1 0 - -

12 2 6 42 49.21 79.37 1.6927 1.8918 2.8228 2.7314

12 2 8 10.33 80.65 93.55 1.1921 0.5123 2.3929 0.4689

12 2 10 1.33 100 - 1 0 - -

16 2 6 6.33 26.32 68.42 1.5619 1.2120 1.9131 1.4669
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TABLE II

MC SIMULATION RESULTS (RAYLEIGH); QOS TX BEAMFORMING; N = 6 TX ANTENNAS, 300 RANDOMIZATIONS

feas. opt. feas. all solutions appr. solutions

M G SINR Qr Qr appr. mean std mean std

8 2 6 100 80.67 99 1.0228 0.0734 1.1233 0.1301

8 2 8 100 82.33 98.67 1.0162 0.0514 1.0979 0.0900

8 2 10 100 87.67 97.67 1.0118 0.0485 1.1150 0.1067

8 2 12 100 88 98 1.0102 0.0396 1.1004 0.0803

8 2 14 100 89.33 98.67 1.0099 0.0478 1.1050 0.1211

8 2 16 100 90.33 98 1.0089 0.0483 1.1143 0.1359

8 2 18 100 92.67 99.33 1.0071 0.0409 1.1052 0.1235

8 2 20 100 92 99.33 1.0064 0.0328 1.0862 0.0894

12 2 6 100 35.33 94 1.2782 0.5915 1.4458 0.6977

12 2 8 100 39 95 1.505 3.3075 1.8661 4.2771

12 2 10 97 50.52 92.44 1.2513 0.5905 1.5542 0.7766

12 2 12 86.67 56.92 94.23 1.2172 0.5583 1.5487 0.7800

12 2 14 68.67 63.59 94.66 1.2330 0.8614 1.7098 1.3993

12 2 16 47 69.50 92.91 1.2031 1.3485 1.8064 2.6241

12 2 18 27.33 69.51 95.12 1.1972 0.9655 1.7324 1.7825

12 2 20 17 82.35 100 1.0734 0.2537 1.4157 0.4921

12 3 6 72 76.85 93.06 1.2440 1.1504 2.4010 2.4730

12 3 8 19.67 83.05 94.92 1.0433 0.2193 1.3460 0.5645

12 3 10 2.33 100 - 1 0 - -

12 4 6 4 100 - 1 0 - -

16 2 6 98.33 11.19 74.58 3.1376 4.9208 3.5149 5.2495

16 2 8 75 15.11 63.56 2.4204 2.2800 2.8635 2.4499

16 2 10 26.67 31.25 58.75 1.5876 1.0146 2.2554 1.1734

16 2 12 4.33 38.46 84.62 4.5305 7.4475 7.4725 9.3851

July 4, 2006 DRAFT



22

TABLE III

MC SIMULATION RESULTS (RAYLEIGH); QOS TX BEAMFORMING; N = 8 TX ANTENNAS, 300 RANDOMIZATIONS

feas. opt. feas. all solutions appr. solutions

M G SINR Qr Qr appr. mean std mean std

12 2 6 100 37 95.33 1.1814 0.2527 1.2964 0.2651

12 2 8 100 35.67 96.33 1.1733 0.2409 1.2752 0.2532

12 2 10 100 34.67 95 1.1734 0.2329 1.2730 0.2413

12 2 12 100 41.33 96 1.1485 0.2099 1.2607 0.2194

12 2 14 100 43 95 1.1478 0.2157 1.2700 0.2281

12 2 16 100 45 94.33 1.1316 0.1956 1.2516 0.2074

12 2 18 100 48.33 95.67 1.1226 0.2297 1.2477 0.2754

12 2 20 100 53.33 95.33 1.0993 0.1765 1.2253 0.2059

12 3 6 100 78.67 98.33 1.0372 0.1065 1.1862 0.1711

12 3 8 100 79 98 1.0367 0.1081 1.1892 0.1783

12 3 10 98.67 81.42 98.99 1.0452 0.1406 1.2545 0.2425

12 3 12 94.67 85.21 97.54 1.0393 0.1464 1.3112 0.2945

12 3 14 78.67 88.14 98.73 1.0559 0.2863 1.5207 0.7351

12 3 16 52.33 92.99 99.36 1.0241 0.1114 1.3766 0.2571

12 3 18 30.67 93.48 98.91 1.0291 0.1444 1.5303 0.3705

12 3 20 17.67 98.11 100 1.0054 0.0396 1.2881 0

12 4 6 100 93.33 99.67 1.0072 0.0342 1.1130 0.0822

12 4 8 87.33 98.09 99.62 1.0037 0.0353 1.2439 0.1731

12 4 10 42.33 97.64 100 1.0075 0.0635 1.3166 0.3272

12 4 12 12 97.22 100 1.0099 0.0595 1.3568 0

12 4 14 3.33 100 - 1 0 - -

16 2 6 100 9.67 93 1.8833 1.6259 1.9858 1.6882

16 2 8 100 11.67 91 1.9955 2.2743 2.1419 2.4018

16 2 10 99.67 15.05 86.62 1.8757 1.3169 2.0598 1.3800

16 2 12 98.67 22.64 88.18 1.6957 1.5693 1.9359 1.7582

16 2 14 94.67 31.69 88.38 1.7937 2.2986 2.2374 2.7755

16 2 16 72.67 46.33 92.20 1.7075 3.8635 2.4220 5.3971

16 2 18 54 59.26 93.21 1.3305 1.0350 1.9073 1.5628

16 2 20 33.33 65 94 1.2662 0.8232 1.8630 1.3105

24 2 6 99.33 0.34 43.96 6.7920 8.7394 6.8366 8.7582

24 2 8 60.67 4.40 30.22 4.8706 6.2300 5.5294 6.5203

24 2 10 11.67 14.29 34.29 3.6415 5.1995 5.5284 6.2925
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TABLE IV

MC SIMULATION RESULTS (RAYLEIGH); QOS TX BEAMFORMING; 1000 RANDOMIZATIONS

feas. opt. feas. all solutions appr. solutions

N M G SINR Qr Qr appr. mean std mean std

4 12 2 6 42 49.21 85.71 1.7778 3.0955 2.8261 4.5637

4 12 2 8 10.33 80.65 96.77 1.1785 0.4303 2.0710 0.3838

4 16 2 6 6.33 26.32 73.68 1.5490 1.1660 1.8540 1.3843

6 16 2 6 98.33 11.19 85.08 3.5662 9.0980 3.9547 9.7061

6 16 2 8 75 15.11 68.89 2.6867 3.6744 3.1607 4.0366

6 16 2 10 26.67 31.25 65 1.6679 1.5570 2.2863 1.9823

6 16 2 12 4.33 38.46 92.31 2.9157 4.1172 4.2840 5.0828

8 16 2 6 100 9.67 96.67 1.8918 3.8850 1.9909 4.0839

8 16 2 8 100 11.67 95.33 1.8077 1.5349 1.9203 1.6067

8 16 2 10 99.67 15.05 93.31 1.7600 1.9039 1.9061 2.0475

8 16 2 12 98.67 22.64 92.23 1.6557 1.7557 1.8689 1.9758

8 16 2 14 94.67 31.69 94.01 1.6887 2.7756 2.0389 3.3582

8 16 2 16 72.67 46.33 95.87 1.3992 1.0721 1.7725 1.3939

8 16 2 18 54 59.26 96.30 1.3021 0.8748 1.7856 1.2744

8 16 2 20 33.33 65 94 1.2416 0.7279 1.7832 1.1492

8 24 2 6 99.33 0.34 52.01 5.8627 7.2044 5.8942 7.2142

8 24 2 8 60.67 4.40 35.71 5.7322 10.6103 6.3963 11.1810

8 24 2 10 11.67 14.29 37.14 2.6311 3.7697 3.6505 4.6122
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TABLE V

MC SIMULATION RESULTS (RAYLEIGH); JMMF TX BEAMFORMING; P = 1000, 1000 RANDOMIZATIONS

opt. all solutions appr. solutions

N M G Fr mean std mean std

4 8 2 75.33 1.011 0.047 1.043 0.087

4 12 2 28.00 1.086 0.121 1.119 0.129

4 16 2 5.67 1.214 0.192 1.227 0.190

4 24 2 0 1.528 0.311 1.528 0.311

4 12 3 11.67 1.053 0.074 1.060 0.076

4 18 3 0 1.200 0.145 1.200 0.145

4 12 4 16.00 1.022 0.037 1.026 0.039

4 16 4 3.00 1.082 0.081 1.084 0.081

6 12 2 61.33 1.046 0.104 1.119 0.139

6 16 2 17.33 1.146 0.162 1.176 0.163

6 24 2 0.67 1.557 0.324 1.561 0.322

6 12 3 42.67 1.022 0.051 1.039 0.063

6 18 3 5.00 1.178 0.150 1.187 0.149

6 12 4 36.33 1.009 0.026 1.013 0.032

6 16 4 9.00 1.053 0.071 1.058 0.072

8 12 2 29.00 1.066 0.116 1.093 0.128

8 16 2 50.67 1.066 0.133 1.133 0.164

8 24 2 2.33 1.490 0.332 1.502 0.327

8 32 2 0 1.996 0.447 1.996 0.447

8 12 3 78.33 1.007 0.026 1.033 0.048

8 18 3 17.67 1.098 0.126 1.118 0.130

8 12 4 66.00 1.001 0.011 1.005 0.019

8 16 4 25.33 1.025 0.054 1.037 0.060
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TABLE VI

2 MULTICAST GROUPS; 4 USERS PER GROUP IN 1 LOCATION

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (4 at L1) & Group 2 (4 at L2)

6–18 100 100 - 1 0 - -

20 99.89 100 - 1 0 - -

22 97.37 100 - 1 0 - -

24 84.82 100 - 1 0 - -

26 65.53 100 - 1 0 - -

28 45.21 100 - 1 0 - -

30 24.43 100 - 1 0 - -

Group 1 (4 at L1) & Group 2 (4 at L3)

6 100 99.89 100 1.0001 0.0035 1.1026 0

8 100 99.89 100 1.0000 0.0014 1.0421 0

10 100 99.77 100 1.0001 0.0014 1.0247 0.0216

12 100 99.89 100 1.0001 0.0018 1.0536 0

14 100 99.89 100 1.0001 0.0030 1.0876 0

16 100 99.77 100 1.0002 0.0047 1.0805 0.0777

18 93.16 97.92 99.88 1.0068 0.0761 1.3493 0.4321

20 82.10 98.61 100 1.0024 0.0246 1.1715 0.1262

22 72.98 99.69 100 1.0040 0.0934 2.2920 1.4971

24 60.78 99.44 100 1.0102 0.2047 2.8121 2.4993

26 35.01 99.02 100 1.0006 0.0086 1.0623 0.0752

28 18.02 100 - 1 0 - -

30 9.46 100 - 1 0 - -

Group 1 (4 at L5) & Group 2 (4 at L2)

6 100 98.63 100 1.0009 0.0091 1.0636 0.0470

8 100 98.63 99.89 1.0011 0.0115 1.0884 0.0549

10 99.77 96.22 99.66 1.0083 0.0691 1.2398 0.2927

12 96.80 93.28 98.94 1.0217 0.1365 1.3789 0.4407

14 85.27 92.91 98.66 1.0364 0.4837 1.6236 1.9302

16 64.61 96.64 99.65 1.0105 0.0824 1.3491 0.3363

18 40.87 97.77 99.44 1.0029 0.0249 1.1709 0.0972

20 23.74 99.52 100 1.0002 0.0030 1.0433 0

22 10.05 97.73 100 1.0017 0.0148 1.0731 0.0930

24 4.22 100 - 1 0 - -

Group 1 (4 at L5) & Group 2 (4 at L7)

6 97.72 82.15 97.78 1.0475 0.1900 1.2968 0.3908

8 91.11 83.48 87.87 1.0486 0.2323 1.3306 0.5251

10 81.64 87.29 98.05 1.0436 0.2147 1.3978 0.5314

12 49.49 91.94 98.85 1.0427 0.2919 1.6110 0.9480

14 18.93 90.97 98.19 1.0172 0.0782 1.2339 0.1868

16 8.78 93.51 100 1.0101 0.0637 1.1551 0.2212

18 2.85 92 96 1.0003 0.0017 1.0081 0
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TABLE VII

2 MULTICAST GROUPS; 4 USERS PER GROUP IN 2 LOCATIONS

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (2 at L2 & 2 at L3) & Group 2 (2 at L1 & 2 at L6)

6 100 95.09 99.54 1.0112 0.0716 1.2507 0.2367

8 100 92.01 99.77 1.0264 0.1277 1.3388 0.3242

10 99.66 94.96 99.66 1.0059 0.0421 1.1258 0.1519

12 95.21 96.28 99.40 1.0121 0.1395 1.3863 0.7031

14 82.08 97.22 99.72 1.0107 0.0989 1.4243 0.4757

16 64.16 97.86 99.82 1.0092 0.0937 1.4705 0.5024

18 43.84 98.44 100 1.0040 0.0395 1.2534 0.2096

20 24.54 99.07 100 1.0019 0.0194 1.2014 0.0238

Group 1 (2 at L1 & 2 at L3) & Group 2 (2 at L2 & 2 at L6)

6 99.89 95.20 99.89 1.0207 0.2014 1.4405 0.8339

8 99.32 91.72 99.20 1.0313 0.1918 1.4162 0.5770

10 95.89 94.64 99.52 1.0287 0.3514 1.5852 1.4980

12 83.79 95.37 99.73 1.0168 0.1532 1.3848 0.6380

14 60.16 98.29 100 1.0059 0.0700 1.3431 0.4384

16 32.08 99.64 100 1.0030 0.0511 1.8562 0

18 13.01 100 - 1 0 - -

20 4.00 100 - 1 0 - -

Group 1 (2 at L2 & 2 at L6) & Group 2 (2 at L5 & 2 at L7)

6 100 81.39 99.43 1.0518 0.1817 1.2854 0.3404

8 99.66 81.21 98.51 1.0529 0.1808 1.3014 0.3345

10 96.12 85.87 98.81 1.0413 0.1690 1.3150 0.3642

12 82.76 90.21 98.90 1.0374 0.2634 1.4262 0.7954

14 57.42 93.24 98.82 1.1537 2.8925 3.7284 12.1003

16 30.48 92.51 98.88 1.0230 0.1203 1.3573 0.3329

18 13.47 94.92 99.15 1.0132 0.0740 1.3091 0.2106

20 5.94 92.31 100 1.0342 0.1755 1.4442 0.5297
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TABLE VIII

2 MULTICAST GROUPS; 4 USERS PER GROUP IN 3 LOCATIONS

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (1 at L1, 1 at L2 & 2 at L3) & Group 2 (1 at L5, 2 at L6 & 1 at L7)

6 99.89 86.40 99.31 1.0320 0.2806 1.2459 0.7464

8 98.17 88.26 98.72 1.0319 0.2202 1.3006 0.6166

10 93.61 88.29 98.78 1.0307 0.1664 1.2890 0.4335

12 72.95 92.02 99.06 1.0276 0.1933 1.3888 0.6271

14 47.49 94.95 99.04 1.0116 0.0736 1.2800 0.2436

16 24.43 97.67 100 1.0333 0.4264 2.4273 2.6821

18 12.10 98.11 100 1.0017 0.0147 1.0897 0.0824

Group 1 (1 at L1, 1 at L3 & 2 at L6) & Group 2 (1 at L2, 1 at L5 & 2 at L7)

6 100 72.37 98.06 1.1180 0.5397 1.4503 0.9824

8 99.43 74.97 97.70 1.0897 0.3115 1.3856 0.5513

10 93.38 80.32 97.31 1.1802 2.7113 2.0320 6.4391

12 72.60 87.11 97.33 1.0465 0.2447 1.4429 0.6323

14 44.06 88.60 97.93 1.0741 0.7053 1.7781 2.1897

16 22.60 92.93 98.48 1.0292 0.1804 1.5183 0.5936

TABLE IX

2 MULTICAST GROUPS; 6 USERS PER GROUP IN 2 LOCATIONS

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (3 at L2 & 3 at L3) & Group 2 (3 at L1 & 3 at L6)

6 100 87.10 98.74 1.0465 0.2543 1.3943 0.6438

8 99.77 82.95 97.71 1.0690 0.6592 1.4569 1.6483

10 84.13 83.45 95.79 1.1520 1.4584 2.1791 3.9289

12 32.53 90.18 97.19 1.1019 0.9403 2.4109 3.3016

14 8.90 92.31 97.44 1.0269 0.1923 1.5115 0.7708

Group 1 (3 at L1 & 3 at L3) & Group 2 (3 at L2 & 3 at L6)

6 100 73.17 97.72 1.1900 1.4948 1.7566 2.9149

8 90.41 68.06 94.44 1.3882 2.4513 2.3839 4.4924

10 60.84 65.85 92.31 1.3287 1.0586 2.1469 1.7277

12 17.69 72.26 91.61 1.3294 1.1546 2.5589 2.1211

Group 1 (3 at L2 & 3 at L3) & Group 2 (3 at L5 & 3 at L7)

6 79.57 50.22 85.80 1.7201 3.1468 2.7365 4.7076

8 36.99 60.19 85.80 1.9784 6.2140 4.2771 11.0821

10 11.87 67.31 90.38 1.6219 1.7062 3.4356 2.6761
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TABLE X

2 MULTICAST GROUPS; 6 USERS PER GROUP IN 3 LOCATIONS

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (2 at L1, 2 at L2 & 2 at L3) & Group 2 (2 at L5, 2 at L6 & 2 at L7)

6 92.69 59.73 91.38 1.4015 1.2621 2.1591 1.9312

8 61.99 67.04 88.40 1.3053 1.2901 2.2634 2.3898

10 13.47 83.05 94.92 1.3440 2.6684 3.7517 7.3235

Group 1 (2 at L1, 2 at L3 & 2 at L6) & Group 2 (2 at L2, 2 at L5 & 2 at L7)

6 94.86 46.93 87.97 1.9805 4.1862 3.1019 5.9382

8 44.41 32.96 75.32 1.8251 2.9113 3.7787 4.8256

10 7.19 82.54 96.83 1.1688 0.8581 2.1441 2.0659

Group 1 (2 at L1, 2 at L2 & 2 at L6) & Group 2 (2 at L3, 2 at L5 & 2 at L7)

6 70.21 24.07 81.63 2.2538 3.5065 2.7779 4.0640

8 32.53 41.40 81.40 2.0232 3.5807 3.0824 4.8974

10 7.42 47.6923 64.6154 1.1750 0.4518 1.6682 0.6888

Group 1 (2 at L1, 2 at L3 & 2 at L5) & Group 2 (2 at L2, 2 at L6 & 2 at L7)

6 83.33 58.36 89.18 1.6009 2.7181 2.7385 4.4104

8 43.38 71.05 89.21 1.1648 0.6820 1.8097 1.3349

10 14.61 80.47 93.75 1.0962 0.3556 1.6790 0.7211

Group 1 (2 at L2, 2 at L3 & 2 at L5) & Group 2 (2 at L1, 2 at L6 & 2 at L7)

6 97.26 47.30 92.49 1.4560 1.4843 1.9334 2.0170

8 68.95 63.91 88.91 1.2968 0.9642 2.0553 1.5861

10 10.89 86.34 93.44 1.0478 0.2604 1.6284 0.7519

DRAFT July 4, 2006



29

TABLE XI

2 MULTICAST GROUPS; 8 USERS PER GROUP IN 2 LOCATIONS

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (4 at L2 & 4 at L3) & Group 2 (4 at L1 & 4 at L6)

6 100 80.37 97.72 1.0984 0.4743 1.5540 1.0098

8 96.23 83.87 97.03 1.0713 0.3764 1.5256 0.9007

10 48.86 82.71 96.50 1.1279 0.7362 1.8951 1.7752

12 5.82 72.55 92.16 1.5911 3.1056 3.7783 6.5226

Group 1 (4 at L1 & 4 at L3) & Group 2 (4 at L2 & 4 at L6)

6 85.96 56.57 89.51 1.7763 3.1965 3.1098 5.0015

8 45.89 51.74 83.83 2.2882 6.8722 4.3653 10.8132

10 15.18 73.68 92.48 1.3903 2.1492 2.9202 4.5190

Group 1 (4 at L2 & 4 at L3) & Group 2 (4 at L5 & 4 at L7)

6 50.46 39.14 66.74 1.8379 2.1140 3.0261 2.9037

8 2.86 64 68 1.2478 1.0216 5.21233 0

TABLE XII

3 MULTICAST GROUPS; 3–4 USERS PER GROUP IN 1 LOCATION

feas. opt. feas. all solutions appr. solutions

SINR Qr Qr appr. mean std mean std

Group 1 (3 at L1), Group 2 (3 at L2) & Group 3 (3 at L3)

6 72.15 97.94 99.84 1.0069 0.1004 1.3638 0.6604

8 36.87 99.38 100 1.0006 0.0085 1.0961 0.0712

10 13.93 100 - 1 0 - -

Group 1 (4 at L1), Group 2 (4 at L2) & Group 3 (4 at L3)

6 29.11 94.90 99.22 1.0155 0.1085 1.3556 0.4043

8 7.65 100 - 1 0 - -

Group 1 (4 at L3), Group 2 (4 at L6) & Group 3 (4 at L7)

6 9.46 96.39 100 1.0174 0.1191 1.4820 0.4954

July 4, 2006 DRAFT



30

TABLE XIII

MEASURED CHANNELS; JMMF TX BEAMFORMING; P = 1000, 300 RANDOMIZATIONS

opt. all solutions appr. solutions

Group 1 Group 2 Fr mean std mean std

4@L1 4@L3 75.26 1.0009 0.0096 1.0035 0.0191

2@L1, 2@L3 2@L2, 2@L6 87.56 1.0040 0.0230 1.0321 0.0580

2@L5, 2@L7 2@L2, 2@L6 82.42 1.0065 0.0308 1.0372 0.0655

1@L1, 1@L2, 2@L3 1@L5, 2@L6, 1@L7 77.72 1.0179 0.0570 1.0653 0.0937

3@L2, 3@L3 3@L5, 3@L7 20.89 1.0771 0.1126 1.0974 0.1185

3@L2, 3@L3 3@L1, 3@L6 45.89 1.0154 0.0516 1.0285 0.0674

2@L1, 2@L2, 2@L3 2@L5, 2@L6, 2@L7 37.56 1.0449 0.0915 1.0720 0.1071

2@L1, 2@L2, 2@L6 2@L3, 2@L5, 2@L7 27.85 1.0957 0.1315 1.1327 0.1381

4@L2, 4@L3 4@L1, 2@L6 38.13 1.0157 0.0437 1.0254 0.0533

4@L2, 4@L3 4@L5, 2@L5 9.13 1.1084 0.1380 1.1193 0.1402
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Fast and Effective Hybrid Multidimensional Scaling Approach
for Node Localization in Wireless Sensor Networks

Georgios Latsoudas, Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract

Given a set of pairwise distance estimates between nodes, it is often of interest to generate a

map of node locations. This is an old nonlinear estimation problem that has recently drawn interest

in the signal processing community, due to the emergence of wireless sensor networks. Sensor maps

are useful for estimating the spatial distribution of measured phenomena, and for routing purposes.

We propose a two-stage algorithm that combines algebraic initialization and gradient descent. In

particular, we borrow an algebraic solution known as Fastmap from the database literature and adapt

it to the sensor network context, using a specific choice of anchor/pivot nodes. The resulting estimates

are fed to a gradient descent iteration. The overall algorithm offers very competitive performance

at significantly lower complexity than existing solutions with similar estimation performance. For a

certain multiplicative measurement noise model that is often adopted in the literature, we also derive

the pertinent Cramér-Rao bound (CRB). Simulations indicate that the performance of our algorithm

is close to the CRB when the network is (close to) fully connected, in the sense that every node

can estimate its distance from all (most) other nodes. Our adaptation of Fastmap also turns out to

make a big difference when used to initialize other iterative distributed estimation algorithms that

have been developed specifically for sparse networks.

I. INTRODUCTION

The problem of node localization from pairwise distance estimates has recently attracted interest

in the signal processing and communications literature (e.g., [1], [2], [4], [6]), owing to the recent

interest in wireless sensor networks. Given a matrix of pairwise distances (usually estimated using

received signal strength measurements and a path loss model), the localization problem aims to
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determine the (relative) node locations that generate these distances. In other words, one seeks a map

of sensor locations with a given (approximate) distance structure. This is a classic problem originating

in psychometrics [7], [8], known as Multi-Dimensional Scaling (MDS). There are many MDS flavors

and variants; perhaps the single most important version is metric MDS. The classical approach to

solving MDS is based on computing the principal components of a double-centered version of the

distance matrix. This works reasonably well (albeit not optimally, due to the double centering), but

its complexity is cubic in the number of nodes, and thus does not scale well with network size. A

popular alternative to principal component analysis (PCA) is the use of gradient descent or other

numerical optimization tools that aim to optimize a stress function. The stress function measures

the error between the given distances and those reproduced by a given configuration of points. The

drawback of gradient descent and related approaches is that they require accurate initialization.

We propose a two-stage MDS algorithm that employs an algebraic initialization procedure followed

by gradient descent. The algebraic initialization is based on the Fastmap [3] algorithm, borrowed from

the database literature. Fastmap is a linear-complexity mapping tool, which is, however, sensitive to

range measurement errors.

Due to the fact that distances are invariant to coordinate frame transformations (rotation, reflection,

shift), there is a need to employ three so-called anchor nodes, whose position is accurately known

(e.g., via GPS) in order to fix a desired coordinate frame. Unfortunately, Fastmap is very sensitive

to coordinate alignment, because the estimated position of every node (and thus anchor nodes as

well) is only based on distances to selected pivot nodes - there is no averaging. In order to mitigate

this problem, we advocate a judicious choice of anchor/pivot nodes, placed at the outer edges of the

network. This placement bypasses the need for alignment and thus alignment errors, thereby providing

a high-quality initialization to the gradient descent. The overall algorithm affords better localization

accuracy than PCA-based MDS, at substantially lower complexity cost (quadratic in the number

of nodes). Our algorithm is also competitive with respect to recent low-complexity solutions (e.g.,

[2]), especially when the network is (close to) fully connected. Finally, our adaptation of Fastmap

also makes a big difference when used to initialize other iterative distributed estimation algorithms,

specifically developed for sparse networks.

The rest of this paper is structured as follows. In section II we explain in detail the PCA-based

MDS algorithm, and the standard gradient descent-based MDS. The Fastmap algorithm is briefly

reviewed in section III. In section IV we describe the proposed hybrid algorithm, while in section

V we summarize Costa’s distributed MDS algorithm [2]. Section VI presents the CRB for a certain

multiplicative measurement noise model that is often adopted in the literature on node localization in

sensor networks [1], [6]. Section VII contains simulation results illustrating the performance of the
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above algorithms, and the CRB. We remark that there are other algorithms in the recent literature

that assume a different measurement model (e.g., 0-1 node connectivity only, as in [6]), or propose

solutions of considerably higher complexity (e.g., as in [1]). We aim for the low-complexity regime,

for simplicity and scalability considerations. Conclusions are drawn in section VIII.

II. MULTIDIMENSIONAL SCALING

MDS [7], [8] has its origins in psychometrics and psychophysics. MDS postulates that perceptual

or objective “dissimilarities” or “distances” between pairs of abstract “objects” can be be generated by

points in m-dimensional space. Any set of distances obeying the triangle inequality can be reproduced

(or closely approximated) by choosing m to be sufficiently large; but usually m = 2 or m = 3 is

chosen to retain the systematic variation, and also for ease of visualization. Thus, MDS aims to find a

geometric representation of the data in 2-D or 3-D space, such that the distances between data points

fit as well as possible the given dissimilarity information.

We denote the dissimilarity measure (the estimated distances in our case), between objects i and j as

dij . The set of dissimilarities yields a measured distance matrix D. We also let d̂ij denote the Euclidean

distance between (generated by) two points Xi = (xi1, xi2, ..., xim) and Xj = (xj1, xj2, ..., xjm), i.e.

d̂ij =

√√√√
m∑

k=1

(xik − xjk)2. (1)

In classical metric MDS, we estimate the node coordinates X by computing the m principal

components of a double-centered and element-wise squared version of the matrix D, denoted by B:

B = −1
2
JPJ, (2)

where P = D ¯D is the matrix of squared distances (¯ denotes the element-wise matrix product),

and J is the centering operator,

J = I− eeT /N, (3)

with N denoting the number of objects (sensor nodes), and e denoting the N × 1 vector of all 1’s .

For an N ×N matrix D and for m dimensions, it can be shown that

−1
2
(d2

ij −
1
N

N∑

j=1

d2
ij −

1
N

N∑

i=1

d2
ij +

1
N2

N∑

j=1

N∑

i=1

d2
ij) =

m∑

k=1

xikxjk, (4)

thus the estimated node coordinates are given by the m principal eigenvectors of the matrix B,

scaled by the square roots of the corresponding eigenvalues. That is , with Ur containing the m

principal eigenvectors and Vr diagonal containing the corresponding eigenvalues, Br = UrVrUT
r

is an optimal least squares approximation of B, and Xr = UrV
1/2
r is an approximation of the node

coordinates in m-dimensional space, up to a common coordinate rotation, reflection, and shift. An
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alignment procedure is necessary to transform the estimated node locations to a desired frame of

reference.

It is important to note that, due to the preprocessing steps prior to PCA, this approach is not

equivalent to nonlinear least-squares parameter fitting using the original measurements.

Direct minimization of a suitable stress function is an alternative to PCA-based MDS [7]. A

common1 stress function is

stress2 =
∑

i,j

wij(d̂ij − dij)2. (5)

Where [wij ] is the weight matrix, whose elements are equal to 1 if node j is in the measurement

range of node i and 0 otherwise. Minimization starts with an initial guess of the node positions (often

random), followed by gradient descent iterations. Initialization matters a lot in this context, because

the stress function is multi-modal. Furthermore, the number of iterations required for convergence

depends heavily on the quality of the initialization.

III. FASTMAP

The basic element of Fastmap [3] is the projection of the nodes on a properly selected line. This

is achieved by selecting two objects Oa, Ob, called pivots, and projecting all other objects on the line

that passes through them. A pair of pivots is chosen for each of the m dimensions. The coordinates,

(i.e. projections on the pivot line) of the objects can be found by employing the cosine law [3]. Thus,

the first coordinate for object Oi is given by:

xi =
d2

ai + d2
ab − d2

bi

2dab
, (6)

where dij is the dissimilarity measure between nodes i and j and a, b are the pivot objects. After

computing these coordinates for each object Oi, we consider a hyperplane which is orthogonal to the

pivot line. We then project the objects on this hyperplane, and repeat the process, this time using

d̃2
ij = d2

ij − (xi − xj)2, i, j = 1, ..., N. (7)

A heuristic method is proposed in [3] for choosing the pivots as far as possible from one another.

In database applications there is no “natural” or preferred coordinate frame of reference, thus the

final alignment step is not used, and anchors are not needed. In the context of sensor networks,

1The negative log-likelihood of the observed data under a suitable measurement noise model would seem to be the

natural choice of stress function. This is not fortuitus in our context, however, because the resulting function is not only

multi-modal, but also leads to numerical difficulties. For this reason, a least squares criterion is preferred. While still multi-

modal, the adopted least squares criterion is much more benign from a numerical optimization viewpoint, and it often yields

performance close to the pertinent CRB, as will be seen in the simulations.
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however, obtaining absolute position estimates is important. Unfortunately, Fastmap is very sensitive

to coordinate alignment, because the estimated position of every node (and thus anchor nodes as well)

is only based on distances to the chosen pivot nodes - there is no averaging. In order to mitigate

this problem, we advocate a particular choice of anchor/pivot nodes, placed at the outer edges of

the network. In particular, we assume that the sensor nodes are spread over a square, and place the

anchor nodes, which will also serve as pivots, at three vertices (see Fig. 1). This placement bypasses

the need for alignment and thus alignment errors, thereby providing a high-quality initialization to

the gradient descent. Anchors #1 and #2 also serve as pivots for determining the coordinates in the

first dimension, while anchors #2 and #3 double as pivots for the second dimension.

We assume that the anchor/pivot nodes which are used by the Fastmap can take distance measure-

ments from all the sensor nodes, (even if we don’t have full connectivity information for the rest of

the nodes). This is reasonable if the anchor/pivot nodes are airborne or in higher ground.

IV. A TWO-STAGE APPROACH

Fastmap is a fast algebraic mapping method that is rather sensitive to measurement errors, partic-

ularly so in the final alignment step. In our context, this sensitivity can be mitigated by the proposed

choice of anchor/pivot nodes. The resulting estimates can be used as initialization for gradient descent.

Each step of gradient descent costs O(N2). Assuming good-enough initialization, only a few gradient

descent steps will be needed. This suggests that a substantial complexity reduction relative to PCA

and other techniques is possible. Interestingly, estimation accuracy can be improved as well, as we

will see.

The basic steps of the two-stage algorithm are shown in Table I. Denoting by (xi, yi) the estimated

position of node i, the partial derivative of the stress function in (5) is given by

∂stress

∂xi
=

∑

j 6=i

wij
(
√

(xi − xj)2 + (yi − yj)2 − dij)(xi − xj)√
(xi − xj)2 + (yi − yj)2

. (8)

with a similar expression for the partial derivative with respect to yi. For simplicity, but also to bound

complexity, a fixed number p = 10 of gradient descent steps is used in our simulations.

V. COSTA’S ALGORITHM

An iterative distributed estimation algorithm for MDS has been recently proposed in [2], using the

principle of majorization. The idea behind majorization is simple. Instead of directly minimizing a

complicated cost/stress function, majorization uses a simpler (usually quadratic) majorizing function

that lies over the said cost/stress function and is equal to it at the current parameter estimate.

Minimizing the majorizing function thus yields a new parameter estimate whose cost/stress is lower
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than or equal to that of the previous one. Continuing in this fashion yields a sequence of parameter

estimates of decreasing cost/stress values. Specializing to the present context [2] yields the following

update

xi
k = aiXk−1bk−1

i , (9)

where Xk is the matrix which contains the position estimates for all the sensor nodes in the kth

iteration of the algorithm, and a is a parameter given by

a−1
i =

N−M∑

j=1,j 6=i

wij +
N∑

j=N−M+1

2wij , (10)

where M is the number of anchor nodes (M = 3 in the 2-D case). The entries of the N × 1 vector

bi are given by

bi(j) = wij(1− dij/d̂ij), j ≤ N −M, j 6= i,

bi(j) = 2wij(1− dij/d̂ij), j > N −M, j 6= i

bi(i) =
N−M∑

i=1

wijdij/d̂ij +
N∑

j=N−M+1

2wijdij/d̂ij ,

(11)

where d̂ij is the reproduced distance computed from the coordinate estimates at iteration k. The

algorithm runs iteratively and the requisite computation can be performed at each node in a distributed

function (every node computes its own position coordinates and the corresponding part of the cost

function). The iterations continue until the associated sequence of costs converges within ε in the

Cauchy sense. The cost function which the authors in [2] propose is:

S =
N−M∑

i=1

Si, (12)

where the local cost functions Si are given by:

Si =
N−M∑

j=1,j 6=i

wij(dij − d̂ij)2 +
N∑

j=N−M+1

2wij(dij − d̂ij)2 (13)

When the difference between the previous and the current cost values becomes smaller than a threshold

ε the algorithm terminates. This is guaranteed due to the fact that a single iteration can reduce or

maintain, but cannot increase the cost, which is also bounded from below.

VI. MEASUREMENT NOISE MODEL AND CRAMÉR-RAO BOUND

Pairwise distance estimates will inevitably contain measurement errors, which are generally am-

plified with increasing distance between nodes. The choice of measurement noise model depends on

many factors, and is application-specific. We shall adopt a certain multiplicative noise model from

the recent literature on node localization in wireless sensor networks [1], [6], in which the distance
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measurement error is proportional to the actual distance between the pair of nodes. Thus the measured

distance dij between nodes i, j is assumed to be drawn from

dij ∼ δij + δijN (0, e2
r), (14)

where δij is the actual distance between nodes i, j and e2
r is the range error variance. We also assume

that the measurements are reciprocal (or symmetrized by averaging prior to further processing); i.e.,

dij = dji.

In this section, we derive the Cramér-Rao Bound (CRB) for node localization using the above

multiplicative noise model. Analogous derivations for different noise models employed in [2], [5] can

be found in [5]. An explanation of the difference between the RSS noise model described therein

and our multiplicative noise model can be found in the appendix.

Define the vector of sensor parameters γ = (γ1γ2...γN ). Each γi contains the location coordinates

for node i, i.e., γi = (xi, yi]) in the 2-D case. The unknown parameter vector for the N − 3

sensors whose locations are unknown2 is defined as θ = (θx θy), with θx = (x1, x2, ..., xN−3)

and θy = (y1, y2, ..., yN−3). This is the vector we wish to estimate. Sensors i, j perform pairwise

observations dij . We assume that the observations dij are statistically independent for i < j. The

density function of the observations dij given the locations of nodes i, j is denoted by f(dij |γi, γj).

Thus the joint log-likelihood is

l(D,γ) =
N∑

i=1

∑

j∈H(i), j<i

li,j ,

li,j = logf(dij |γi, γj)

(15)

where H(i) is the set of nodes which are in the range of node i.

The CRB for coordinate θi is cov(θi) ≥ [Fθ
−1]ii, where Fθ is the Fisher Information Matrix (FIM),

given by

Fθ =


 Fxx Fxy

FT
xy Fyy


 . (16)

The elements for the sub-matrix Fxx are given by

Fxx(k, l) =

{
−∑

j∈H(k) E[ ∂2

∂x2
k
lk,j ], k = l

−IH(k)(l)E[ ∂2

∂xk∂xl
lk,l], k 6= l

, (17)

2In the 2-D case we need 3 anchor nodes.
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where IH(k)(l) is the indicator function (1 if l is in the range of k, 0 otherwise). Similar expressions

hold for the Fxy,Fyy sub-matrices. For full connectivity, the elements of the above matrices are

Fxx(k, l) =





−∑
j

2(xk−xj)2

δ4
kj

− 1
δ2

kj
− e2

r+1
e2

r
(− 1

δ2
kj

+ 4 (xk−xj)2

δ4
kj

)− 1
e2

r
( 1

δ2
kj
− 3 (xk−xj)2

δ4
kj

), k = l,

−( 1
d2

kl
− 2 (xk−xl)2

δ4
kl

+ 1+e2
r

e2
r

(4 (xk−xl)2

δ4
kl

− 1
δ2

kl
)− 1

e2
r
(3 (xk−xl)2

δ2
kl

− 1
δ2

kl
)), k 6= l

(18)

(similar expressions can be obtained for the elements of Fyy) and

Fxx(k, l) =





−∑
j 2(xk − xj)(yk − yj) 1

δ4
kj
− 41+e2

r

e2
r

(xk−xj)(yk−yj)
δ4

kj
+ 3

e2
r

(xk−xj)(yk−yj)
δ4

kj
, k = l,

−(−2(xk − xl)(yk − yl) 1
δ4

kl
+ 41+e2

r

e2
r

(xk−xl)(yk−yj)
δ4

kj
− 3

e2
r

(xk−xj)(yk−yj)
δ4

kj
), k 6= l

(19)

VII. SIMULATION RESULTS

In this section, we compare the aforementioned algorithms in the context of node localization in

sensor networks. Network nodes are considered to be uniformly distributed in a square with area

equal to 1, i.e., the x and y coordinates of the sensor nodes are uniformly distributed in [0, 1]. We

employ the alignment procedure described in [4], when necessary, in order to estimate the absolute

coordinates, and adopt root mean squared error as our estimation performance metric:

RMSE :=
∑N

i=1

√
(xri − xei)2 + (yri − yei)2

N
, (20)

where xei, yei are the estimated coordinates, and xri, yri are the actual coordinates of sensor i. The

computational complexity orders of the various algorithms under consideration are listed in Tables II

and IV, for the case of full and partial connectivity, respectively.

The baseline3 MDS algorithm is based on PCA of the doubly-centered matrix of squared distances,

and henceforth referred to as PCA-based MDS. We also implemented Costa’s iterative majorization

algorithm. We tried both a random initialization and the alternative initialization strategy suggested

in [2]. The latter strategy often yields complex coordinates when the triangle inequality fails due to

measurement errors, whereas the former (random) yields unsatisfactory results that do not improve

with decreasing error variance. It is clear that Costa’s algorithm is sensitive with respect to initializa-

tion, and could benefit from a better “warm start”. For this reason, we also tried using our adaptation

of Fastmap to initialize Costa’s iteration.

Fig. 2 shows the RMSE performance of the various algorithms (PCA, Fastmap, Fastmap+SD,

Fastmap+Costa, and Costa with random initialization) for a sensor network with 80 sensors, as a

3PCA-based MDS is not directly applicable in the case of partial connectivity.
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function of e2
r . Distance measurements are drawn from the multiplicative noise model in (14). The

corresponding Cramér-Rao Bound (CRB) is also plotted as a benchmark. For the SD step of the

proposed algorithm (Fastmap+SD), a step-size of λ = 0.01 and p = 10 SD iterations were used.

The convergence threshold in Costa’s algorithm was set to ε = 0.1. From Fig. 2, we observe that

stand-alone Fastmap exhibits poor performance, which quickly degrades with increasing range error

variance. When randomly initialized, Costa’s algorithm also performs poorly in this setup, and its

performance does not improve with decreasing error variance. Fastmap+SD and Fastmap+Costa are

the best options from the viewpoint of RMSE performance, and remain relatively close to the CRB,

especially for low range error variance. Interestingly, the proposed algorithm is not only less complex,

but also more accurate than PCA. This is partially attributed to the fact that PCA uses double centering,

which colors the noise, whereas the proposed algorithm directly minimizes the stress function.

Fig. 3 shows corresponding results for a network with 200 nodes (λ = 0.005; the remaining setup is

the same as Fig. 2). The estimation accuracy of PCA, Fastmap+SD, and Fastmap+Costa, is improved

relative to Fig. 2, as expected. Fastmap does not benefit, due to the lack of (implicit or explicit)

averaging, while Costa’s algorithm with random initialization actually does quite the same as in Fig.

2.

We also tried an additive measurement noise model, i.e., the measurements are drawn from

dij ∼ δij +N (0, e2
r), (21)

where the variance of the measurement error is independent of the distance between the two nodes.

The results are shown in Fig. 4 for the case of 80 nodes, and in Fig. 5 for the case of 200

nodes. We observe again that Fastmap+SD and Fastmap+Costa yield approximately the same RMSE

performance, significantly outperforming stand-alone Fastmap and PCA.

One might also wonder whether the RMSE comparison of the various algorithms is sensitive with

respect to the statistics of the multiplicative noise (normal versus log-normal, see also the appendix).

Fig. 6 presents simulation results for the log-normal multiplicative noise model employed in [2]. We

observe that the relative performance ordering of the different algorithms is the same as in Fig. 2.

Fig. 7 shows the average computational cost in floating point operations (FLOPS) of Fastmap+SD

and Fastmap+Costa, as a function of the number of nodes, N . We observe that Fastmap+SD exhibits

significantly lower complexity (almost five times lower) than Fastmap+Costa. The values of the step-

size λ used for the different values of N are listed in Table III.

In all simulation results presented so far, the network was assumed to be fully connected, i.e.,

distance measurements were available for each pair of nodes in the network. We now switch to partially

connected scenarios. We assume that nodes which are further apart than a certain threshold (radio
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range) cannot hear each other, the corresponding distance measurement is marked as unavailable, and

the associated weight in the stress function is set to zero. An exception is that every node is assumed

to be within range from each of the three anchor/pivot nodes. We adopt the multiplicative noise model

in 14, and consider two cases: in the first the measurement range is 0.14 and in the second it is 0.3.

Fig. 8 and Fig. 9 show the RMSE performance of Fastmap+SD, Fastmap+Costa, and the CRB (which

accounts for the missing data) for the two cases, as a function of range error variance, for N = 80

nodes. Table V lists the values of λ used in the SD iteration for the three different connectivity

scenarios (fully connected, partially connected with measurement range equal to 0.3, or 0.14) and

N = 80. For Fastmap+SD, we tried two different values for the number of SD iterations: p = 10 and

p = 30. From Fig. 8 and Fig. 9, we observe that Fastmap+Costa outperforms Fastmap+SD in terms

of RMSE, even when p = 30 is used in SD. This is in contrast to the case of full connectivity. The

corresponding FLOP counts in Fig. 10 and Fig. 11 show that Fastmap+SD with p = 10 maintains its

computational complexity advantage compared to Fastmap+Costa. Increasing p improves the RMSE

performance of Fastmap+SD, but at the cost of computational complexity, which is brought closer to

that of Fastmap+Costa. We conclude that while Fastmap+SD offers lower complexity for the same

RMSE performance as Fastmap+Costa in the fully connected case, there is a performance penalty for

the reduced complexity in the partially connected case, wherein Fastmap+Costa may be preferable.

VIII. CONCLUSIONS

We have proposed a hybrid two-stage node localization algorithm that offers better accuracy than

existing alternatives of the same (and, in certain cases, even higher) complexity order. The new

algorithm employs Fastmap, coupled with judicious selection of anchor nodes that double as pivots,

to generate a computationally cheap yet sufficiently accurate initialization for gradient descent. The

new algorithm is particularly attractive (in terms of the offered performance-complexity trade-off) in

the case of dense networks.

We also proposed using our adaptation of Fastmap as initialization for Costa’s algorithm. The latter

combination appears useful for sparse networks, in which case it attains better estimation performance

than Fastmap+SD, albeit at a higher complexity cost. Our simulations indicate that, in the context

of our present application, Fastmap+SD uniformly outperforms PCA-based MDS, both in terms of

complexity and in terms of estimation accuracy. We have also derived the pertinent CRB for the

multiplicative noise model in [1], [6], which was adopted for most of our simulations.

APPENDIX

Normal vs. log-normal multiplicative noise modelling: In [2], [5], the power received at node i

from node j, measured in decibel (dB), is modelled as Pij = P̄ij + v, where P̄ij is the mean power,
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and v is a zero-mean Gaussian random variable of standard deviation σ. The mean power is modelled

as P̄ij = P0 − 10nplog10
δij

δ0
, where P0 is the mean power for a reference distance, δ0, and np is the

path loss exponent. It follows that

P0 − Pij = P0 − P̄ij − v = 10nplog10
δij

δ0
− v, (22)

and the associated distance estimate is given by [2]

di,j = δ010(P0−Pij)/10np . (23)

Substituting Pij = P̄ij + v and P̄ij = P0 − 10nplog10
δij

δ0
yields

dij = δi,j10−v/10np . (24)

Notice that the noise factor is log-normal, whereas in the model of [1], [6] (also adopted herein) the

noise factor is normally distributed.
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TABLE I

TWO-STAGE FASTMAP+SD ALGORITHM

Input: D

1) Run Fastmap using as pivots three anchor nodes, judi-

ciously placed on the three vertices of the square distri-

bution area. Let X be the vector containing the resulting

estimated node coordinates.

2) For i = 1 to p

begin

• evaluate ∇stress at the point X

• X = X − λ∇stress

end

TABLE II

COMPUTATIONAL COMPLEXITIES FOR FULL CONNECTIVITY (N IS NUMBER OF NODES, m IS NUMBER OF SPATIAL

DIMENSIONS)

Algorithm Complexity

Fastmap O(mN)

Fastmap+SD O(pmN2), p << N

PCA O(N3)

Costa’s O(kmN2), k << N

TABLE III

CHOICE OF STEP-SIZE λ AS A FUNCTION OF THE NUMBER OF NODES N

N λ

80 0.01

110 0.0075

140 0.007

170 0.006

200 0.005

DRAFT July 28, 2006



13

TABLE IV

COMPUTATIONAL COMPLEXITIES FOR PARTIAL CONNECTIVITY (s IS THE AVERAGE NUMBER OF DISTANCE

MEASUREMENTS COLLECTED BY A NODE)

Algorithm Complexity

Fastmap O(mN)

Fastmap+SD O(pmsN), p << N

Costa’s O(kmsN), k << N

TABLE V

CHOICE OF STEP-SIZE λ AS A FUNCTION OF MEASUREMENT RANGE

Measurement Range λ

Infinite 0.01

0.3 0.0125

0.14 0.015

•

•

•

•

•

• •
©

Anchor/pivot #1
©

Anchor/pivot #2

©Anchor/pivot #3

Sensor nodes

Fig. 1. Anchor/pivot node placement
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Fig. 2. RMSE performance vs. measurement range error variance. N = 80, all pairwise distance estimates collected.

Measurement error proportional to the actual distance. 100 Monte Carlo runs.
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Fig. 3. RMSE performance vs. measurement range error variance. N = 200, all pairwise distance estimates collected.

Measurement error proportional to the actual distance. 100 Monte Carlo runs.
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Fig. 4. RMSE performance vs. measurement range error variance. N = 80, additive noise measurement model, all pairwise

distance estimates collected. 100 Monte Carlo runs.
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Fig. 5. RMSE performance vs. measurement range error variance. N = 200 sensor nodes, all pairwise distance estimates

collected. Additive noise measurement model. 100 Monte Carlo runs.
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Fig. 6. RMSE performance vs. power noise variance σ2. N = 80 sensor nodes, all pairwise distance estimates collected.

Log-normal noise measurement model. 100 Monte Carlo runs.
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Fig. 7. Computational cost in FLOPS vs. number of nodes. All pairwise distance estimates collected, e2
r = 0.1, ε = 0.1.

Multiplicative noise measurement model. 50 Monte Carlo runs.
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Fig. 8. RMSE performances and CRB for limited measurement range = 0.14 (the weights which correspond to distances

greater than this limit are set to zero). ε = 0.1, λ = 0.015, N = 80. 100 Monte Carlo runs.
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Fig. 9. RMSE performances and CRB for limited measurement range = 0.3. ε = 0.1, λ = 0.013, N = 80. 100 Monte

Carlo runs.
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Fig. 10. Computational cost in FLOPS vs. number of nodes. Pairwise distances collected only for nodes with actual

distance smaller than 0.3. e2
r = 0.1. Multiplicative measurement noise model. 50 Monte Carlo runs.
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Fig. 11. Computational cost in FLOPS vs number of nodes. Pairwise distances collected only for nodes with actual distance

smaller than 0.14. e2
r = 0.1. Multiplicative measurement noise model. 50 Monte Carlo runs.
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A new and conceptually simple semidefinite relaxation approach is proposed for MIMO detection in
communication systems employing high-order QAM constellations. The new approach affords improved
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I. INTRODUCTION

Maximum likelihood (ML) detection in memoryless Multiple-Input Multiple-Output (MIMO) commu-

nication systems with Gaussian noise is equivalent to a least-squares lattice search problem which is

NP-hard. For this reason, several computationally efficient approximate solutions have been developed.

The current state-of-art includes two main families of high-performance MIMO detectors: those based

on Sphere Decoding (SD) [11], [1], [2], [12], [14] and those based on Semidefinite Relaxation (SDR)

[7], [6], [5], [13]. SD detectors can provide the exact ML solution at low computational cost, provided

that the Signal to Noise Ratio (SNR) is relatively high, and the aggregate transmission rate is relatively

low. However, SD cannot efficiently handle high problem dimensions (long symbol vectors) or high-order

symbol constellations, especially at low SNR, and it has recently been shown that its expected complexity

is exponential [4], under certain conditions that are relatively mild and general in our context. Worst-case

complexity of computing the exact ML solution is generically exponential, due to NP-hardness.

In contrast, SDR approaches feature polynomial worst-case complexity and very competitive per-

formance. Initially, SDR multiuser / MIMO detection was developed for Binary Phase-Shift Keying

(BPSK) constellations, but the ideas were later extended to M-PSK [7], [6], [5], and, very recently,

to 16- Quadrature Amplitude Modulation (16-QAM) [13] and general QAM constellations [8]. While

[13] deals exclusively with 16-QAM, the approach can, in principle, be extended to higher-order QAM

alphabets. This, however, entails the introduction of additional slack variables, and complexity becomes

O(K6.5N6.5), where N = O(M), M is the number of symbols, and K is the square root of the order

of the constellation. The idea in [13] is fruitful for 16-QAM, but impractical for higher orders. Likewise,

the complexity of the methods in [8] ranges from O(K6.5N4) to O(K6.5N6.5).

In this contribution, we propose a different, O(N3.5) relaxation for high-order QAM alphabets. Our

approach can be viewed as further relaxation of [13], only utilizing upper and lower bounds on the

symbol energy in the relaxation step. The key features of our approach are that i) it provides significant

performance improvements relative to existing solutions of comparable worst-case complexity order;

and ii) its complexity is independent of the constellation order for uniform QAM, and affine in the

constellation order for non-uniform QAM. For BPSK and 4-QAM, our approach reduces to the one in

[7].
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II. PROBLEM STATEMENT AND PRELIMINARIES

For any separable QAM constellation1, ML detection in memoryless MIMO communication systems

with Gaussian noise can be formulated as the following optimization problem (possibly after noise pre-

whitening):

min ||d−Ms||22 (1)

subject to: Re {s(i)} ∈ Areal, Im {s(i)} ∈ Aimag, ∀i. (2)

For brevity of exposition, we will assume that Areal = Aimag = A in the sequel, although our approach

generalizes trivially to different alphabets for the real and imaginary parts. We thus consider

min ||d−Ms||22 (3)

subject to: Re {s(i)} ∈ A, Im {s(i)} ∈ A, ∀i, (4)

where d is the complex baseband received vector, M is a known baseband-equivalent channel matrix,

and s is the symbol vector. Upon defining

z :=
[
Re {d}T Im {d}T

]T
, (5)

H :=


 Re {M} −Im {M}

Im {M} Re {M}


 (6)

r :=
[
Re {s}T Im {s}T

]T
, (7)

we may convert the problem to real-valued form

min ||z−Hr||22 (8)

subject to: r(i) ∈ A, ∀i. (9)

III. PROPOSED SOLUTION

Assume that A is symmetric about the origin (always the case for QAM constellations). In this case,

if r satisfies the finite alphabet constraints in (9), then so does tr, for t ∈ {−1, 1}. Furthermore,

||z−Hr||22 = rTHTHr− 2zTHr + zT z. (10)

1Separable constellations are almost always adopted for ease of decoding, even in the single-input single-output case.
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It follows that (8)-(9) is equivalent to

min
(
rTHTHr− 2zTHtr

)
(11)

subject to: r(i) ∈ A, ∀i, t ∈ {−1, 1} . (12)

Further defining x :=
[

rT t
]T
∈ RN and

Q :=


 HTH −HTz

−zTH 0


 , (13)

problem (11)-(12) can be put in homogeneous quadratic form

minxTQx (14)

subject to: x(i) ∈ A, ∀i ∈ {1, · · · , N − 1} , x(N) ∈ {−1, 1} . (15)

Using xTQx = Trace(xTQx) = Trace(QxxT ), and denoting X := xxT , we can rewrite problem

(14)-(15) equivalently as:

min Trace(QX) (16)

subject to: X ≥ 0, rank(X) = 1, (17)

X(i, i) ∈ A2, ∀i ∈ {1, · · · , N − 1} , X(N,N) = 1. (18)

Problem (16)-(18) entails nonconvex constraints: the rank(X) = 1 constraint, as well as the finite

(squared) alphabet constraints X(i, i) ∈ A2, ∀i ∈ {1, · · · , N − 1}. Dropping the rank-one constraint,

and relaxing the constraints X(i, i) ∈ A2, ∀i ∈ {1, · · · , N − 1} to the convex half-space constraints

L := mina∈A a2 ≤ X(i, i) ≤ maxa∈A a2 =: U , ∀i ∈ {1, · · · , N − 1}, we obtain the following convex

relaxation:

min Trace(QX) (19)

subject to: X ≥ 0, (20)

L ≤ X(i, i) ≤ U, ∀i ∈ {1, · · · , N − 1} , X(N,N) = 1. (21)

Note that (19)-(21) is not a Lagrangian relaxation of (16)-(18), because, in addition to the rank-one

constraint, we have relaxed the alphabet constraints. This means that the bi-dual interpretation does not

hold for our relaxation in (19)-(21). For a bi-dual relaxation see [13]. Our proposed relaxation in (19)-(21)

can be viewed as further relaxation of [13], and it affords lower complexity for large |A| compared to

[13].
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The relaxed problem in (19)-(21) can be solved using any of the available modern SDP solvers, such

as SeDuMi [10], based on interior point methods. After this step, an approximate solution to the original

problem can be generated using Gaussian randomization: that is, drawing random vectors x ∼ N (0,Xo),

where Xo denotes the solution of (19)-(21), quantizing each element of x to the nearest point in A,

reconstructing s from the quantized x, and picking the s that yields the smallest cost in (3).

A. Complexity

The worst-case complexity of solving a generic SDP problem involving a matrix variable of size N×N

and O(N) linear constraints is O(N6.5). That would imply a complexity of O(N6.5) for problem (19)-

(21). However, exploiting the fact that the constraints in (21) are separable and only apply to the diagonal

elements of X, that figure can be reduced to O(N3.5), which is very competitive (N = 2M + 1, where

M is the number of QAM symbols). The complexity of the randomization step is O(N2) per draw. We

emphasize that, unlike [13], the complexity of the overall algorithm is independent of the constellation

order for uniform QAM, and affine in the constellation order for non-uniform QAM. This is because

the quantization step in the randomization loop amounts to simple scaling and rounding for uniform

constellations, but may require a linear search for non-uniform constellations.

IV. SIMULATIONS

We conducted Monte-Carlo (MC) simulation experiments for two indicative MIMO transmission

scenarios: a 16 × 16 system using 64-QAM, and an 8 × 8 system using 16-QAM. In both cases,

the channel matrix comprised i.i.d. elements drawn from a circularly symmetric zero-mean complex

normal distribution of unit variance (CN (0, 1)), and a new channel realization was drawn for each vector

transmission (MC trial). The signal to noise ratio is defined as SNR := 10log10
MEs

No
, where M is the

length of the transmitted QAM symbol vector s, Es is the mean symbol energy of the QAM constellation,

and the noise vector is i.i.d. CN (0, No).

In order to gauge performance as a function of the number of randomizations, we tested our SDR algo-

rithm with 100, 300, and 1000 randomization samples per decoded vector. As baselines for comparison,

we employed i) the Schnor-Euchner variant of SD (SE-SD) with an infinite radius so that the optimal

solution is always obtained; and ii) two commonly used suboptimal solutions of complexity O(M3):

the quantized output of the zero-forcing linear receiver (QZF), and the (nonlinear) block MMSE-DFE

(BMMSE-DFE) [3], [9]. Two performance metrics were used: Symbol Error Rate (SER), and worst-case

execution2 time. SE-SD was implemented as a Matlab executable (mex) compiled from optimized C

2On an Intel Centrino 1.6GHz system, with 512M RAM.
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code; SDR was implemented using the general-purpose SeDuMi toolbox [10]. As a result, execution

time estimates are somewhat biased in favor of SE-SD. The reason for using a measure of worst-case (as

opposed to average) complexity is that in on-line applications we have to decode within a specified time,

and bad channels do happen with positive probability. The choice between execution time or number of

floating point operations is debatable, especially because SE-SD was implemented in mex/C; but we are

interested in order-of-magnitude estimates, and differences in execution time are easier to appreciate.

Figures 1 and 2 show the SER versus SNR and worst-case execution time versus SNR, respectively,

for the 16× 16 system using 64-QAM (6416 ≈ 8× 1028). From figure 2, it is evident that SE-SD is too

complex for this configuration; very long runs are actually not atypical. Due to this, figure 2 actually

shows a lower bound on the worst-case execution time of SE-SD, computed from far fewer realizations.

The associated SER cannot be estimated in reasonable time, and is therefore not reported in figure 1.

SDR provides a performance improvement of up to 7.5 dB over BMMSE-DFE. Note that the worst-case

complexity of SDR is essentially independent of SNR. In fact the point-wise complexity of SDR is very

stable and predictable for any problem realization. This is good at low to moderate SNR, but a drawback

at high SNR where the detection problem becomes easier. Also note that the number of randomization

samples used in SDR does not affect the grosso modo complexity order, as expected; and a moderate

number of randomizations is sufficient.

Figures 3 and 4 show corresponding results for the 8 × 8 system using 16-QAM (168 ≈ 4.3 × 109).

Notice that, in this (far) simpler scenario, SE-SD is much more efficient computationally than SDR, and

it always yields the exact ML solution. SDR is up to 7.5 dB away from SE-SD, at a uniformly higher

computational cost across the range of SNR of interest. It clearly makes no sense to use SDR in this

case.

Summarizing, the SD family of detectors exhibits a threshold behavior: it either works very well (for

low-enough symbol vector dimension, order of the individual symbol constellation, and high-enough

SNR) or it “freezes”. The threshold between the two regimes depends on a combination of these three

factors. When SD works, it outperforms SDR in terms of complexity and SER performance. In difficult

scenarios, SDR offers an attractive alternative relative to earlier solutions.

V. CONCLUSIONS

We have proposed a new SDR approach for MIMO detection of high-order QAM constellations. The

new approach is the simplest one in the class of SDR detectors for high-order QAM: its worst-case

complexity is nearly cubic in the dimension of the transmitted symbol vector, and independent of the

March 4, 2006



SIDIROPOULOS, LUO, IEEE SIGNAL PROCESSING LETTERS (REVISED) 7

constellation order for uniform QAM / affine in the constellation order for non-uniform QAM. Under

certain conditions, the new approach affords significant improvements in SER over prior methods.
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Fig. 1. SER versus SNR: 16× 16 system, 64-QAM symbols.
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Fig. 3. SER versus SNR: 8× 8 system, 16-QAM symbols.
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APPROXIMATION BOUNDS FOR QUADRATIC OPTIMIZATION WITH
HOMOGENEOUS QUADRATIC CONSTRAINTS

ZHI-QUAN LUO∗, NICHOLAS D. SIDIROPOULOS† , PAUL TSENG‡ , AND SHUZHONG ZHANG§

Abstract. We consider the NP-hard problem of finding a minimum norm vector in n-dimensional real or

complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show that a semidefinite

programming (SDP) relaxation for this nonconvex quadratically constrained quadratic program (QP) provides an

O(m2) approximation in the real case, and an O(m) approximation in the complex case. Moreover, we show that

these bounds are tight up to a constant factor. When the Hessian of each constraint function is of rank 1 (namely,

outer products of some given so-called steering vectors) and the phase spread of the entries of these steering vectors

are bounded away from π/2, we establish a certain “constant factor” approximation (depending on the phase

spread but independent of m and n) for both the SDP relaxation and a convex QP restriction of the original

NP-hard problem. Finally, we consider a related problem of finding a maximum norm vector subject to m convex

homogeneous quadratic constraints. We show that a SDP relaxation for this nonconvex QP provides an O(1/ ln(m))

approximation, which is analogous to a result of Nemirovski, Roos and Terlaky [14] for the real case.

Key words. semidefinite programming relaxation, nonconvex quadratic optimization, approximation bound

AMS subject classifications. 90C22, 90C20, 90C59

1. Introduction. Consider the quadratic optimization problem with concave homogeneous
quadratic constraints:

υqp := min ‖z‖2
s.t.

∑

`∈Ii

|hH
` z|2 ≥ 1, i = 1, ..., m,

z ∈ IFn,

(1.1)

where IF is either IR or IC, ‖·‖ denotes the Euclidean norm in IFn, m ≥ 1, each h` is a given vector in
IFn, and I1, ..., Im are nonempty, mutually disjoint index sets satisfying I1 ∪ · · · ∪Im = {1, ..., M}.
Throughout, the superscript “H” will denote the complex Hermitian transpose, i.e., for z = x+ iy,
where x, y ∈ IRn and i2 = −1, zH = xT − iyT . Geometrically, the above problem (1.1) corresponds
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to finding a least norm vector in a region defined by the intersection of the exteriors of m co-
centered ellipsoids. If the vectors h1, ..., hM are linearly independent, then M equals the sum of
the rank of the matrices defining these m ellipsoids. Notice that the problem (1.1) is easily solved
for the case of n = 1, so we assume n ≥ 2.

We assume that
∑

`∈Ii
‖h`‖ 6= 0 for all i, which is clearly a necessary condition for (1.1) to

be feasible. This is also a sufficient condition (since
⋃m

i=1{z |
∑

`∈Ii
|hH

` z|2 = 0} is a finite union
of proper subspaces of IFn, so its complement is nonempty and any point in its complement can
be scaled to be feasible for (1.1)). Thus, the above problem (1.1) always has an optimal solution
(not necessarily unique) since its objective function is coercive, continuous, and its feasible set
is nonempty, closed. Notice, however, that the feasible set of (1.1) is typically nonconvex and
disconnected, with an exponential number of connected components exhibiting little symmetry.
This is in contrast to the quadratic problems with convex feasible set but nonconvex objective
function considered in [13, 14, 22]. Furthermore, unlike the class of quadratic problems studied in
[1, 7, 8, 15, 16, 21, 23, 24, 25, 26], the constraint functions in (1.1) do not depend on z2

1 , ..., z2
n only.

Our interest in the nonconvex QP (1.1) is motivated by the transmit beamforming problem
for multicasting applications [20] and by the wireless sensor network localization problem [6]. In
the transmit beamforming problem, a transmitter utilizes an array of n transmitting antennas to
broadcast information within its service area to m radio receivers, with receiver i ∈ {1, ..., m}
equipped with |Ii| receiving antennas. Let h`, ` ∈ Ii, denote the n × 1 complex steering vector
modelling propagation loss and phase shift from the transmitting antennas to the `th receiving
antenna of receiver i. Assuming that each receiver performs spatially matched filtering / maximum
ratio combining, which is the optimal combining strategy under standard mild assumptions, then
the constraint

∑

`∈Ii

|hH
` z|2 ≥ 1

models the requirement that the total received signal power at receiver i must be above a given
threshold (normalized to 1). This constraint is also equivalent to a signal-to-noise ratio (SNR)
condition commonly used in data communication. Thus, to minimize the total transmit power
subject to individual SNR requirements (one at each receiver), we are led to the QP (1.1). In the
special case where each radio receiver is equipped with a single receiving antenna, the problem
reduces to [20]:

min ‖z‖2
s.t. |hH

` z|2 ≥ 1, ` = 1, ..., m,

z ∈ IFn,

(1.2)

This problem is a special case of (1.1) whereby each ellipsoid lies in IFn and the corresponding
matrix has rank 1.

In this paper, we first show that the nonconvex QP (1.2) is NP-hard in either the real or
the complex case, which further implies the NP-hardness of the general problem (1.1). Then, we
consider a semidefinite programming (SDP) relaxation of (1.1) and a convex QP restriction of (1.2)
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and study their worst-case performance. In particular, let υsdp, υcqp and υqp denote the optimal
values of the SDP relaxation, the convex QP restriction, and the original QP (1.1), respectively.
We establish a performance ratio of υqp/υsdp = O(m2) for the SDP relaxation in the real case,
and we give an example showing that this bound is tight up to a constant factor. Similarly, we
establish a performance ratio of υqp/υsdp = O(m) in the complex case, and we give an example
showing the tightness of this bound. We further show that, in the case when the phase spread of
the entries of h1, ..., hM is bounded away from π/2, the performance ratios υqp/υsdp and υcqp/υqp

for the SDP relaxation and the convex QP restriction, respectively, are independent of m and n.

In recent years, there have been extensive studies of the performance of SDP relaxations for
nonconvex QP. However, to our knowledge, this is the first performance analysis of SDP relaxation
for QP with concave quadratic constraints. Our proof techniques also extend to a maximization
version of the QP (1.1) with convex homogeneous quadratic constraints. In particular, we give a
simple proof of a result analogous to one of Nemirovski, Roos and Terlaky [14] (also see [13, The-
orem 4.7]) for the real case, namely, the SDP relaxation for this nonconvex QP has a performance
ratio of O(1/ ln(m)).

2. NP-hardness. In this section, we show that the nonconvex QP (1.1) is NP-hard in general.
First, we notice that, by a linear transformation if necessary, the following problem

minimize zHQz

subject to |z`| ≥ 1, ` = 1, ..., n,

z ∈ IFn,

(2.1)

is a special case of (1.1), where Q ∈ IFn×n is a Hermitian positive definite matrix (i.e., Q Â 0),
and z` denotes the `th component of z. Hence, it suffices to establish the NP-hardness of (2.1). To
this end, we consider a reduction from the NP-complete partition problem: Given positive integers
a1, a2, ..., aN , decide whether there exists a subset I of {1, ..., N} satisfying

∑

`∈I
a` =

1
2

N∑

`=1

a`.(2.2)

Our reductions differ for the real and complex cases. As will be seen, the NP-hardness proof in
the complex case1 is more intricate than in the real case.

2.1. The Real Case. We consider the real case of IF = IR. Let n := N and

a := (a1, . . . , aN )T ,

Q := aaT + In Â 0,

where In denotes the n× n identity matrix.

1This NP-hardness proof was first presented in an appendix of [20] and is included here for completeness; also

see [26, Proposition 3.5] for a related proof.
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We show that a subset I satisfying (2.2) exists if and only if the optimization problem (2.1)
has a minimum value of n. Since

zT Qz = |aT z|2 +
n∑

`=1

|z`|2 ≥ n whenever |z`| ≥ 1 ∀ `, z ∈ IRn,

we see that (2.1) has a minimum value of n if and only if there exists a z ∈ IRn satisfying

aT z = 0, |z`| = 1 ∀ `.

The above condition is equivalent to the existence of a subset I satisfying (2.2), with the corre-
spondence I = {` | z` = 1}. This completes the proof.

2.2. The Complex Case. We consider the complex case of IF = IC. Let n := 2N + 1 and

a := (a1, . . . , aN )T ,

A :=
(

IN IN −eN

aT 0T
N − 1

2aT eN

)
,

Q := AT A + In Â 0,

where eN denotes the N -dimensional vector of ones, 0N denotes the N -dimensional vector of zeros,
and In and IN are identity matrices of sizes n× n and N ×N , respectively.

We show that a subset I satisfying (2.2) exists if and only if the optimization problem (2.1)
has a minimum value of n. Since

zHQz = ‖Az‖2 +
n∑

`=1

|z`|2 ≥ n whenever |z`| ≥ 1 ∀ `, z ∈ ICn,

we see that (2.1) has a minimum value of n if and only if there exists a z ∈ ICn satisfying

Az = 0, |z`| = 1 ∀ `.

Expanding Az = 0 gives the following set of linear equations:

0 = z` + zN+` − zn, ` = 1, ..., N,(2.3)

0 =
N∑

`=1

a`z` − 1
2

(
N∑

`=1

a`

)
zn.(2.4)

For ` = 1, ..., 2N , since |z`| = |zn| = 1 so that z`/zn = eiθ` for some θ` ∈ [0, 2π), we can rewrite
(2.3) as

cos θ` + cos θN+` = 1,

sin θ` + sin θN+` = 0,
` = 1, ..., N.

These equations imply that θ` ∈ {−π/3, π/3} for all ` 6= n. In fact, these equations further imply
that cos θ` = cos θN+` = 1/2 for ` = 1, ..., N , so that

Re

(
N∑

`=1

a`
z`

zn
− 1

2

(
N∑

`=1

a`

))
= 0.
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Therefore, (2.4) is satisfied if and only if

Im

(
N∑

`=1

a`
z`

zn
− 1

2

(
N∑

`=1

a`

))
= Im

(
N∑

`=1

a`
z`

zn

)
= 0,

which is further equivalent to the existence of a subset I satisfying (2.2), with the correspondence
I = {` | θ` = π/3}. This completes the proof.

3. Performance analysis of SDP relaxation. In this section, we study the performance
of an SDP relaxation of (1.2). Let

Hi :=
∑

`∈Ii

h`h
H
` , i = 1, ..., m.

The well-known SDP relaxation of (1.1) [11, 19] is

υsdp := min Tr(Z)

s.t. Tr(HiZ) ≥ 1, i = 1, ...,m,

Z º 0, Z ∈ IFn×n is Hermitian.

(3.1)

An optimal solution of the SDP relaxation (3.1) can be computed efficiently using, say, interior-
point methods; see [18] and references therein.

Clearly υsdp ≤ υqp . We are interested in upper bounds for the relaxation performance of the
form

υqp ≤ Cυsdp ,

where C ≥ 1. Since we assume Hi 6= 0 for all i, it is easily checked that (3.1) has an optimal
solution, which we denote by Z∗.

3.1. General steering vectors: the real case. We consider the real case of IF = IR.
Upon obtaining an optimal solution Z∗ of (3.1), we construct a feasible solution of (1.1) using the
following randomization procedure:

1. Generate a random vector ξ ∈ IRn from the real-valued normal distribution
N(0, Z∗).

2. Let z∗(ξ) = ξ/ min
1≤i≤m

√
ξT Hiξ.

We will use z∗(ξ) to analyze the performance of the SDP relaxation. Similar procedures have been
used for related problems [1, 3, 4, 5, 14]. First, we need to develop two lemmas. The first lemma
estimates the left-tail of the distribution of a convex quadratic form of a Gaussian random vector.

Lemma 3.1. Let H ∈ IRn×n, Z ∈ IRn×n be two symmetric positive semidefinite matrices
(i.e., H º 0, Z º 0). Suppose ξ ∈ IRn is a random vector generated from the real-valued normal
distribution N(0, Z). Then, for any γ > 0,

Prob
(
ξT Hξ < γE(ξT Hξ)

) ≤ max
{√

γ,
2(r̄ − 1)γ

π − 2

}
,(3.2)
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where r̄ := min{rank(H), rank(Z)}.
Proof. Since the covariance matrix Z º 0 has rank r := rank(Z), we can write Z = UUT , for

some U ∈ IRn×r satisfying UT ZU = Ir. Let ξ̄ := QT UT ξ ∈ IRr, where Q ∈ IRr×r is an orthogonal
matrix corresponding to the eigen-decomposition of the matrix

UT HU = QΛQT ,

for some diagonal matrix Λ = diag{λ1, λ2, ..., λr}, with λ1 ≥ λ2 ≥ ... ≥ λr ≥ 0. Since UT HU has
rank at most r̄, we have λi = 0 for all i > r̄. It is readily checked that ξ̄ has the normal distribution
N(0, Ir). Moreover, ξ is statistically identical to UQξ̄, so that ξT Hξ is statistically identical to

ξ̄T QT UT HUQξ̄ = ξ̄T Λξ̄ =
r̄∑

i=1

λi|ξ̄i|2.

Then, we have

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γE

(
r̄∑

i=1

λi|ξ̄i|2
))

= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γ

r̄∑

i=1

λi

)
.

If λ1 = 0, then this probability is zero, which proves (3.2). Thus, we will assume that λ1 > 0. Let
λ̄i := λi/(λ1 + · · ·+ λr̄), for i = 1, ..., r̄. Clearly, we have

λ̄1 + · · ·+ λ̄r̄ = 1, λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄r̄ ≥ 0.

We consider two cases. First, suppose λ̄1 ≥ α, where 0 < α < 1. Then, we can bound the
above probability as follows:

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ

)

≤ Prob
(|ξ̄1|2 < γ/α

)
(3.3)

≤
√

2γ

πα
,

where the last step is due to the fact that ξ̄1 is a real-valued zero mean Gaussian random variable
with unit variance.

In the second case, we have λ̄1 < α, so that

λ̄2 + · · ·+ λ̄r̄ = 1− λ̄1 > 1− α.

This further implies (r̄ − 1)λ̄2 ≥ λ̄2 + · · ·+ λ̄r̄ > 1− α. Hence

λ̄1 ≥ λ̄2 >
1− α

r̄ − 1
.
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Using this bound, we obtain the following probability estimate:

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ, λ̄2|ξ̄2|2 < γ

)

= Prob
(
λ̄1|ξ̄1|2 < γ

) · Prob
(
λ̄2|ξ̄2|2 < γ

)
(3.4)

≤
√

2γ

πλ̄1
·
√

2γ

πλ̄2

≤ 2(r̄ − 1)γ
π(1− α)

.

Combining the estimates for the above two cases and setting α = 2/π, we immediately obtain the
desired bound (3.2).

Lemma 3.2. Let IF = IR. Let Z∗ º 0 be a feasible solution of (3.1) and let z∗(ξ) be generated
by the randomization procedure described earlier. Then, with probability 1, z∗(ξ) is well defined
and feasible for (1.1). Moreover, for every γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξT Hiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)
≥ 1−m ·max

{√
γ,

2(r − 1)γ
π − 2

}
− 1

µ
,(3.5)

where r := rank(Z∗).

Proof. Since Z∗ º 0 is feasible for (3.1), it follows that Tr(HiZ
∗) ≥ 1 for all i = 1, ..., m. Since

E(ξT Hiξ) = Tr(HiZ
∗) ≥ 1 and the density of ξT Hiξ is absolutely continuous, the probability of

ξT Hiξ = 0 is zero, implying that z∗(ξ) is well defined with probability 1. The feasibility of z∗(ξ)
is easily verified.

To prove (3.5), we first note that E(ξξT ) = Z∗. Thus, for any γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξT Hiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

= Prob
(
ξT Hiξ ≥ γ ∀ i = 1, ...,m and ‖ξ‖2 ≤ µTr(Z∗)

)

≥ Prob
(
ξT Hiξ ≥ γTr(HiZ

∗) ∀ i = 1, ..., m and ‖ξ‖2 ≤ µTr(Z∗)
)

= Prob
(
ξT Hiξ ≥ γE(ξT Hiξ) ∀ i = 1, ..., m and ‖ξ‖2 ≤ µE(‖ξ‖2))

= 1− Prob
(
ξT Hiξ < γE(ξT Hiξ) for some i or ‖ξ‖2 > µE(‖ξ‖2))

≥ 1−
m∑

i=1

Prob
(
ξT Hiξ < γE(ξT Hiξ)

)− Prob
(‖ξ‖2 > µE(‖ξ‖2))

> 1−m ·max
{√

γ,
2(r − 1)γ

π − 2

}
− 1

µ
,

where the last step uses Lemma 3.1 as well as Markov’s inequality:

Prob
(‖ξ‖2 > µE(‖ξ‖2)) ≤ 1

µ
.
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This completes the proof.

We now use Lemma 3.2 to bound the performance of the SDP relaxation.

Theorem 3.3. Let IF = IR. For the QP (1.1) and its SDP relaxation (3.1), we have υqp = υsdp

if m ≤ 2, and otherwise

υqp ≤ 27m2

π
υsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can assume that the
rank r of the optimal SDP solution Z∗ satisfies r(r + 1)/2 ≤ m; see e.g. [17]. Thus r <

√
2m. If

m ≤ 2, then r = 1, implying that Z∗ = z∗(z∗)T for some z∗ ∈ IRn and it is readily seen that z∗ is
an optimal solution of (1.1), so that υqp = υsdp. Otherwise, we apply the randomization procedure
to Z∗. We also choose

µ = 3, γ =
π

4m2

(
1− 1

µ

)2

=
π

9m2
.

Then, it is easily verified using r <
√

2m that

√
γ ≥ 2(r − 1)γ

π − 2
∀ m = 1, 2, ...

Plugging these choices of γ and µ into (3.5), we see that there is a positive probability (independent
of problem size) of at least

1−m
√

γ − 1
µ

= 1−
√

π

3
− 1

3
= 0.0758...

that ξ generated by the randomization procedure satisfies

min
1≤i≤m

ξT Hiξ ≥ π

9m2
and ‖ξ‖2 ≤ 3Tr(Z∗).

Let ξ be any vector satisfying these two conditions.2 Then, z∗(ξ) is feasible for (1.1), so that

υqp ≤ ‖z∗(ξ)‖2 =
‖ξ‖2

mini ξT Hiξ
≤ 3Tr(Z∗)

(π/9m2)
=

27m2

π
υsdp,

where the last equality uses Tr(Z∗) = υsdp.

In the above proof, other choices of µ can also be used, but the resulting bound seems not as
sharp. Theorem 3.3 suggests that the worst-case performance of the SDP relaxation deteriorates

2The probability that no such ξ is generated after N independent trials is at most (1 − 0.0758..)N , which for

N = 100 equals 0.000375.. Thus, such ξ requires relatively few trials to generate.
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quadratically with the number of quadratic constraints. Below we give an example demonstrating
that this bound is in fact tight up to a constant factor.

Example 1: For any m ≥ 2 and n ≥ 2, consider a special instance of (1.2), corresponding to (1.1)
with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h` =
(

cos
(

`π

m

)
, sin

(
`π

m

)
, 0, . . . , 0

)T

, ` = 1, ...., m.

Let z∗ = (z∗1 , . . . , z∗n)T ∈ IRn be an optimal solution of (1.2) corresponding to the above choice of
steering vectors h`. We can write

(z∗1 , z∗2) = ρ(cos θ, sin θ), for some θ ∈ [0, 2π).

Since {`π/m, ` = 1, ..., m} is uniformly spaced on [0, π), there must exist an integer ` such that

either
∣∣∣∣θ −

`π

m
− π

2

∣∣∣∣ ≤
π

2m
or

∣∣∣∣θ −
`π

m
+

π

2

∣∣∣∣ ≤
π

2m
.

For simplicity, we assume the first case. (The second case can be treated similarly.) Since the last
(n− 2) entries of h` are zero, it is readily checked that

|hT
` z∗| = ρ

∣∣∣∣cos
(

θ − `π

m

)∣∣∣∣ = ρ

∣∣∣∣sin
(

θ − `π

m
− π

2

)∣∣∣∣ ≤ ρ
∣∣∣sin

( π

2m

)∣∣∣ ≤ ρπ

2m
.

Since z∗ satisfies the constraint |hT
` z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2m|hT
` z∗|

π
≥ 2m

π
,

implying

υqp = ‖z∗‖2 ≥ 4m2

π2
.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (3.1), and it has an objective value of Tr(Z∗) = 2. Thus, for this
instance, we have

υqp ≥ 2m2

π2
υsdp.

The preceding example and Theorem 3.3 show that the SDP relaxation (3.1) can be weak if
the number of quadratic constraints is large, especially when the steering vectors h` are in a certain
sense “uniformly distributed” in space.



10 Z.-Q. LUO, N.D. SIDIROPOULOS, P. TSENG AND S. ZHANG

3.2. General steering vectors: the complex case. We consider the complex case of
IF = IC. We will show that the performance ratio of the SDP relaxation (3.1) improves to O(m)
in the complex case (as opposed to O(m2) in the real case). Similar to the real case, upon
obtaining an optimal solution Z∗ of (3.1), we construct a feasible solution of (1.1) using the
following randomization procedure:

1. Generate a random vector ξ ∈ ICn from the complex-valued normal distri-
bution Nc(0, Z∗) [2, 26].

2. Let z∗(ξ) = ξ/ min
1≤i≤m

√
ξHHiξ.

Most of the ensuing performance analysis is similar to that of the real case. In particular, we
will also need the following two lemmas analogous to Lemmas 3.1 and 3.2.

Lemma 3.4. Let H ∈ ICn×n, Z ∈ ICn×n be two Hermitian positive semidefinite matrices (i.e.,
H º 0, Z º 0). Suppose ξ ∈ ICn is a random vector generated from the complex-valued normal
distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ < γE(ξHHξ)

) ≤ max
{

4
3
γ, 16(r̄ − 1)2γ2

}
,(3.6)

where r̄ := min{rank(H), rank(Z)}.
Proof. We follow the same notations and proof as for Lemma 3.1, except for two blanket

changes:

matrix transpose → Hermitian transpose,
orthogonal matrix → unitary matrix.

Also, ξ̄ has the complex-valued normal distribution Nc(0, Ir). With these changes, we consider the
same two cases: λ̄1 ≥ α and λ̄1 < α, where 0 < α < 1. In the first case, we have similar to (3.3)
that

Prob
(
ξHHξ < γE(ξHHξ)

) ≤ Prob
(|ξ̄1|2 < γ/α

)
.(3.7)

Recall that the density function of a complex-valued circular normal random variable u ∼ Nc(0, σ2),
where σ is the standard deviation, is

1
πσ2

e−
|u|2
σ2 ∀ u ∈ IC.

In polar coordinates, the density function can be written as

f(ρ, θ) =
ρ

πσ2
e−

ρ2

σ2 ∀ ρ ∈ [0,+∞), θ ∈ [0, 2π).

In fact, a complex-valued normal distribution can be viewed as a joint distribution of its modulus
and its argument, with the following particular properties: (1) the modulus and argument are
independently distributed; (2) the argument is uniformly distributed over [0, 2π); (3) the modulus
follows a Weibull distribution with density

f(ρ) =

{
2ρ
σ2 e−

ρ2

σ2 , if ρ ≥ 0;
0, if ρ < 0,
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and distribution function

Prob {|u| ≤ t} = 1− e−
t2

σ2 .(3.8)

Since ξ̄1 ∼ Nc(0, 1), substituting this into (3.7) yields

Prob
(
ξHHξ < γE(ξHHξ)

) ≤ Prob
(|ξ̄1|2 < γ/α

) ≤ 1− e−γ/α ≤ γ/α,

where the last inequality uses the convexity of the exponential function.

In the second case of λ̄1 < α, we have similar to (3.4) that

Prob
(
ξHHξ < γE(ξHHξ)

) ≤ Prob
(
λ̄1|ξ̄1|2 < γ

) · Prob
(
λ̄2|ξ̄2|2 < γ

)

= (1− e−γ/λ̄1)(1− e−γ/λ̄2)

≤ γ2

λ̄1λ̄2

≤ (r̄ − 1)2γ2

(1− α)2
,

where last step uses the fact that λ̄1 ≥ λ̄2 ≥ (1 − α)/(r̄ − 1). Combining the estimates for the
above two cases and setting α = 3/4, we immediately obtain the desired bound (3.6).

Lemma 3.5. Let IF = IC. Let Z∗ º 0 be a feasible solution of (3.1) and let z∗(ξ) be generated
by the randomization procedure described earlier. Then, with probability 1, z∗(ξ) is well defined
and feasible for (1.1). Moreover, for every γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)
≥ 1−m ·max

{
4
3
γ, 16(r − 1)2γ2

}
− 1

µ
,

where r := rank(Z∗).

Proof. The proof is mostly the same as that for the real case (see Lemma 3.2). In particular,
for any γ > 0 and µ > 0, we still have

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

≥ 1−
m∑

i=1

Prob
(
ξHHiξ < γE(ξHHiξ)

)− Prob
(‖ξ‖2 > µE(‖ξ‖2)) .

Therefore, we can invoke Lemma 3.4 to obtain

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

≥ 1−m ·max
{

4
3
γ, 16(r − 1)2γ2

}
− Prob

(‖ξ‖2 > µE(‖ξ‖2))

≥ 1−m ·max
{

4
3
γ, 16(r − 1)2γ2

}
− 1

µ
,
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which completes the proof.

Theorem 3.6. Let IF = IC. For the QP (1.1) and its SDP relaxation (3.1), we have vsdp = vqp

if m ≤ 3 and otherwise

vqp ≤ 8m · vsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can assume that the
rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and r ≤ √

m if m ≥ 4; see [9, §5].
Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some z∗ ∈ ICn and it is readily seen that z∗ is an optimal
solution of (1.1), so that vsdp = vqp. Otherwise, we apply the randomization procedure to Z∗. By
choosing µ = 2 and γ = 1

4m , it is easily verified using r ≤ √
m that

4
3
γ ≥ 16(r − 1)2γ2 ∀ m = 1, 2, ...

Therefore, it follows from Lemma 3.5 that

Prob
{

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
}
≥ 1−m

4
3
γ − 1

µ
=

1
6
.

Then, similar to the proof of Theorem 3.3, we obtain that with probability of at least 1/6, z∗(ξ)
is a feasible solution of (1.1) and vqp ≤ ‖z∗(ξ)‖2 ≤ 8m · vsdp.3

The proof of Theorem 3.6 shows that, by repeating the randomization procedure, the prob-
ability of generating a feasible solution with a performance ratio no more than 8m approaches
1 exponentially fast (independent of problem size). Alternatively, a de-randomization technique
from theoretical computer science can perhaps convert the above randomization procedure into a
polynomial-time deterministic algorithm [12]; also see [14].

Theorem 3.6 shows that the worst-case performance of SDP relaxation deteriorates linearly
with the number of quadratic constraints. This contrasts with the quadratic rate of deterioration
in the real case (see Theorem 3.3). Thus, the SDP relaxation can yield better performance in the
complex case. This is in the same spirit as the recent results in [26] which showed that the quality
of SDP relaxation improves by a constant factor for certain quadratic maximization problems
when the space is changed from IRn to ICn. Below we give an example demonstrating that this
approximation bound is tight up to a constant factor.

Example 2: For any m ≥ 2 and n ≥ 2, let K = d√me (so K ≥ 2). Consider a special instance of
(1.2), corresponding to (1.1) with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h` =
(

cos
jπ

K
, sin

jπ

K
e

i2kπ
K , 0, . . . , 0

)T

with ` = jK −K + k, j, k = 1, ..., K.

3The probability that no such ξ is generated after N independent trials is at most (5/6)N , which for N = 30

equals 0.00421.. Thus, such ξ requires relatively few trials to generate.
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Hence there are K2 complex rank-1 constraints. Let z∗ = (z∗1 , . . . , z∗n)T ∈ ICn be an optimal solution
of (1.2) corresponding to the above choice of d√me2 steering vectors h`. By a phase rotation if
necessary, we can without loss of generality assume that z∗1 is real and write

(z∗1 , z∗2) = ρ(cos θ, sin θeiψ), for some θ, ψ ∈ [0, 2π).

Since {2kπ/K, k = 1, ...,K} and {jπ/K, j = 1, ...,K} are uniformly spaced in [0, 2π) and [0, π)
respectively, there must exist integers j and k such that

∣∣∣∣ψ −
2kπ

K

∣∣∣∣ ≤
π

K
and either

∣∣∣∣θ −
jπ

K
− π

2

∣∣∣∣ ≤
π

2K
or

∣∣∣∣θ −
jπ

K
+

π

2

∣∣∣∣ ≤
π

2K
.

Without loss of generality, we assume
∣∣∣∣θ −

jπ

K
− π

2

∣∣∣∣ ≤
π

2K
.

Since the last (n− 2) entries of each h` are zero, it is readily seen that, for ` = jK −K + k,

∣∣Re(hH
` z∗)

∣∣ = ρ

∣∣∣∣cos θ cos
jπ

K
+ sin θ sin

jπ

K
cos

(
ψ − 2kπ

K

)∣∣∣∣

= ρ

∣∣∣∣cos
(

θ − jπ

K

)
+ sin θ sin

jπ

K

(
cos

(
ψ − 2kπ

K

)
− 1

)∣∣∣∣

= ρ

∣∣∣∣sin
(

θ − jπ

K
− π

2

)
− 2 sin θ sin

jπ

K
sin2

(
Kψ − 2kπ

2K

)∣∣∣∣

≤ ρ
∣∣∣sin π

2K

∣∣∣ + 2ρ sin2 π

2K

≤ ρπ

2K
+

ρπ2

2K2
.

In addition, we have

∣∣Im(hH
` z∗)

∣∣ = ρ

∣∣∣∣sin θ sin
jπ

K
sin

(
ψ − 2kπ

K

)∣∣∣∣

≤ ρ

∣∣∣∣sin
(

ψ − 2kπ

K

)∣∣∣∣

≤ ρ

∣∣∣∣ψ −
2kπ

K

∣∣∣∣ ≤
ρπ

K
.

Combining the above two bounds, we obtain

∣∣hH
` z∗

∣∣ ≤
∣∣Re(hH

` z∗)
∣∣ +

∣∣Im(hH
` z∗)

∣∣ ≤ 3ρπ

2K
+

ρπ2

2K2
.

Since z∗ satisfies the constraint |hH
` z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2K2|hH
` z∗|

π(3K + π)
≥ 2K2

π(3K + π)
,
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implying

υqp = ‖z∗‖2 ≥ 4K4

π2(3K + π)2
=

4d√me4
π2(3d√me+ π)2

.

On the other hand, the positive semidefinite matrix

Z∗ = diag{1, 1, 0, . . . , 0}
is feasible for the SDP relaxation (3.1), and it has an objective value of Tr(Z∗) = 2. Thus, for this
instance, we have

υqp ≥ 2d√me4
π2(3d√me+ π)2

υsdp ≥ 2m

π2(3 + π/2)2
υsdp.

The preceding example and Theorem 3.6 show that the SDP relaxation (3.1) can be weak if
the number of quadratic constraints is large, especially when the steering vectors h` are in a certain
sense “uniformly distributed” in space. In the next subsection, we will tighten the approximation
bound in Theorem 3.6 by considering special cases where the steering vectors are “not too spread
out in space”.

3.3. Specially configured steering vectors: the complex case. We consider the complex
case of IF = IC. Let Z∗ be any optimal solution of (3.1). Since Z∗ is feasible for (3.1), Z∗ 6= 0.
Then

Z∗ =
r∑

k=1

wkwH
k ,(3.9)

for some nonzero wk ∈ ICn, where r := rank(Z∗) ≥ 1. By decomposing wk = uk + vk, with
uk ∈ span{h1, ..., hM} and vk ∈ span{h1, ..., hM}⊥, it is easily checked that Z̃ :=

∑r
k=1 ukuH

k is
feasible for (3.1) and

〈I, Z∗〉 =
r∑

k=1

‖uk + vk‖2 =
r∑

k=1

(‖uk‖2 + ‖vk‖2) = 〈I, Z̃〉+
r∑

k=1

‖vk‖2.

This implies vk = 0 for all k, so that

wk ∈ span{h1, ..., hM}.(3.10)

Below we show that the SDP relaxation (3.1) provides a constant factor approximation to the
QP (1.1) when the phase spread of the entries of h` is bounded away from π/2.

Theorem 3.7. Suppose that

h` =
p∑

i=1

βi`gi ∀ ` = 1, ..., M,(3.11)

for some p ≥ 1, βi` ∈ IC and gi ∈ ICn such that ‖gi‖ = 1 and gH
i gj = 0 for all i 6= j. Then the

following results hold.
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(a) If Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0, then υqp ≤ Cυsdp , where

C := max
i,j,` | βH

i`
βj` 6=0

(
1 +

|Im(βH
i` βj`)|2

|Re(βH
i` βj`)|2

)1/2

.(3.12)

(b) If βi` = |βi`|eiφi` , where

φi` ∈ [φ̄` − φ, φ̄` + φ] ∀ i, `, for some 0 ≤ φ <
π

4
and some φ̄` ∈ IR,(3.13)

then Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0, and C given by (3.12) satisfies

C ≤ 1
cos(2φ)

.(3.14)

Proof. (a) By (3.10), we have

wk =
p∑

i=1

αkigi,

for some αki ∈ IC. This together with (3.9) yields

〈I, Z∗〉 =
r∑

k=1

‖wk‖2 =
r∑

k=1

∥∥∥∥∥
p∑

i=1

αkigi

∥∥∥∥∥

2

=
r∑

k=1

p∑

i=1

|αki|2 =
p∑

i=1

λ2
i ,

where the third equality uses the orthonormal properties of g1, ..., gp, and the last equality uses
λi :=

(∑r
k=1 |αki|2

)1/2 = ‖(αki)r
k=1‖.

Let

z∗ :=
p∑

i=1

λigi.

Then, the orthonormal properties of g1, ..., gp yields

‖z∗‖2 =

∥∥∥∥∥
p∑

i=1

λigi

∥∥∥∥∥

2

=
p∑

i=1

λ2
i = 〈I, Z∗〉 = υsdp .(3.15)

Moreover, for each ` ∈ {1, ..., M}, we obtain from (3.9) that

〈h`h
H
` , Z∗〉 =

r∑

k=1

〈h`h
H
` , wkwH

k 〉 =
r∑

k=1

|hH
` wk|2

=
r∑

k=1

∣∣∣∣∣
p∑

i=1

αkih
H
` gi

∣∣∣∣∣

2

=
r∑

k=1

∣∣∣∣∣
p∑

i=1

αkiβi`

∣∣∣∣∣

2
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= Re




r∑

k=1

p∑

i=1

p∑

j=1

αH
kiαkjβ

H
i` βj`


 = Re




p∑

i=1

p∑

j=1

βH
i` βj`

r∑

k=1

αH
kiαkj




=
p∑

i=1

p∑

j=1

Re

(
βH

i` βj`

r∑

k=1

αH
kiαkj

)

≤
p∑

i=1

p∑

j=1

∣∣βH
i` βj`

∣∣
∣∣∣∣∣

r∑

k=1

αH
kiαkj

∣∣∣∣∣ ≤
p∑

i=1

p∑

j=1

∣∣βH
i` βj`

∣∣ ‖(αki)r
k=1‖‖(αkj)r

k=1‖

=
p∑

i=1

p∑

j=1

∣∣βH
i` βj`

∣∣ λiλj ,

where the fourth equality uses (3.11) and the orthonormal properties of g1, ..., gp; the last inequality
is due to the Cauchy-Schwarz inequality. Then, it follows that

〈h`h
H
` , Z∗〉 ≤

p∑

i=1

p∑

j=1

(|Re(βH
i` βj`)|2 + |Im(βH

i` βj`)|2
)1/2

λiλj

=
p∑

i=1

p∑

j=1

∣∣Re(βH
i` βj`)

∣∣
(

1 +
|Im(βH

i` βj`)|2
|Re(βH

i` βj`)|2
)1/2

λiλj

≤
p∑

i=1

p∑

j=1

∣∣Re(βH
i` βj`)

∣∣ Cλiλj

=
p∑

i=1

p∑

j=1

Re(βH
i` βj`)Cλiλj ,

where the summation in the second step is taken over i, j with βH
i` βj` 6= 0, the third step is due to

(3.12), and the last step is due to the assumption that Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0. Also,
we have from (3.11) and the orthonormal properties of g1, ..., gp that

|hH
` z∗|2 =

∥∥∥∥∥
p∑

i=1

λih
H
` gi

∥∥∥∥∥

2

=

∥∥∥∥∥
p∑

i=1

λiβi`

∥∥∥∥∥

2

=
p∑

i=1

p∑

j=1

λiλjRe(βH
i` βj`).

Comparing the above two displayed equations, we see that

〈h`h
H
` , Z∗〉 ≤ C|hH

` z∗|2, ` = 1, ..., M.

Since Z∗ is feasible for (3.1), this shows that
√

Cz∗ is feasible for (1.1), which further implies

υqp ≤
∥∥∥
√

Cz∗
∥∥∥

2

= C‖z∗‖2 = Cυsdp.

This proves the desired result.
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(b) The condition (3.13) implies that |φi` − φj`| ≤ 2φ < π/2. In other words, the phase angle
spread of the entries of each β` = (β1`, β2`, . . . , βn`)T is no more than 2φ. This further implies that

cos(φi` − φj`) ≥ cos(2φ) ∀ i, j, `.(3.16)

We have

βH
i` βj` = |βi`|e−iφi` |βj`|eiφj`

= |βi`||βj`|ei(φj`−φi`)

= |βi`||βj`|(cos(φj` − φi`) + i sin(φj` − φi`)).

Since |φi`−φj`| < π/2 so that cos(φj`−φi`) > 0, we see that Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0.
Then

(
1 +

|Im(βH
i` βj`)|2

|Re(βH
i` βj`)|2

)1/2

≤ (
1 + tan2(φj` − φi`)

)1/2
=

1
cos(φj` − φi`)

≤ 1
cos(2φ)

,

where the last step uses (3.16). Using this in (3.12) completes the proof.

In Theorem 3.7(b), we can more generally consider βi` of the form βi` = ωi`e
iφi`(1 + iθi`),

where ωi` ≥ 0, αi` satisfies (3.13), and

|θj` − θi`| ≤ σ|1 + θi`θj`| ∀ i, j, `, for some σ ≥ 0 with tan(2φ)σ < 1.(3.17)

Then the proof of Theorem 3.7(b) can be extended to show the following upper bound on C given
by (3.12):

C ≤ 1
cos(2φ)

·
√

1 + σ2

1− tan(2φ)σ
.(3.18)

However, this generalization is superficial as we can also derive (3.18) from (3.14) by rewriting βi`

as

βi` = |βi`|eiφ̃i` with φ̃i` = φi` + tan−1(θi`).

Then, applying (3.14) yields C ≥ cos(2φ̃), where φ̃ = maxi,j,` |φ̃i` − φ̃j`|/2. Using trigono-
metric identity, it can be shown that cos(2φ̃) equals the right-hand side of (3.18) with σ =

max
i,j,` | θi`θj` 6=−1

|θj` − θi`|/|1 + θi`θj`|.

Notice that Theorem 3.7(b) implies that if φ = 0, then the SDP relaxation (3.1) is tight for
the quadratically constrained QP (1.1) with IF = IC. Such is the case when all components of h`,
` = 1, ..., M , are real and nonnegative.

4. A convex QP restriction. In this subsection, we consider a convex quadratic program-
ming restriction of (1.2) in the complex case of IF = IC and analyze its approximation bound. Let
us write h` (the channel steering vector) as

h` = (. . . , |hj`|eiφj` , . . .)T
j=1,....,n.
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For any φ̄j ∈ [0, 2π), j = 1, ..., n, and any φ ∈ (0, π/2), define the four corresponding index subsets:

J1
` := {j | φj` ∈ [φ̄j − φ, φ̄j + φ]},

J2
` := {j | φj` ∈ [φ̄j − φ + π/2, φ̄j + φ + π/2]},

J3
` := {j | φj` ∈ [φ̄j − φ + π, φ̄j + φ + π]},

J4
` := {j | φj` ∈ [φ̄j − φ + 3π/2, φ̄j + φ + 3π/2]},

for ` = 1, ...,M . The above four subsets are pairwise disjoint if and only if φ < π/4, and are
collectively exhaustive if and only if φ ≥ π/4. Choose an index subset J with the property that

for each `, at least one of J1
` , J2

` , J3
` , J4

` contains J.

Of course, J = ∅ is always allowable, but we should choose J maximally since our approximation
bound will depend on the ratio n/|J | (see Theorem 4.1 below). Partition the constraint set index
{1, ..., M} into four subsets K1,K2,K3,K4 such that

J ⊆ Jk
` ∀ ` ∈ Kk, k = 1, 2, 3, 4.

Consider the following convex QP restriction of (1.2) corresponding to K1, K2, K3, K4:

υcqp := min ‖z‖2

s.t. Re(hH
` z) ≥ 1 ∀ ` ∈ K1,

−Im(hH
` z) ≥ 1 ∀ ` ∈ K2,

−Re(hH
` z) ≥ 1 ∀ ` ∈ K3,

Im(hH
` z) ≥ 1 ∀ ` ∈ K4.

(4.1)

The above problem is a restriction of (1.2) because, for any z ∈ IC,

|z| ≥ max{|Re(z)|, |Im(z)|}
= max{Re(z), Im(z),−Re(z),−Im(z)}.

If J 6= ∅ and (. . . , hj`, . . .)j∈J 6= 0 for ` = 1, ..., M , then (4.1) is feasible, and hence has
an optimal solution. Since (4.1) is a restriction of (1.2), υqp ≤ υcqp . We have the following
approximation bound.

Theorem 4.1. Suppose that J 6= ∅ and (4.1) is feasible. Then,

υcqp ≤ υqp

N

cos2 φ
max

k=1,...,N

(
max
j∈Ĵk

η̄j

η
πk(j)

)2

,

where N := dn/|J |e, η̄j := max` |hj`|, η
j

:= min`|hj` 6=0 |hj`|, Ĵ1, ..., ĴN is any partition of {1, ..., n}
satisfying |Ĵk| ≤ |J | for k = 1, ..., N , and πk is any injective mapping from Ĵk to J .

Proof. By making the substitution

z
new

j ← zje
iφ̄j ,
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we can without loss of generality assume that φ̄j = 0 for all j and `.

Let z∗ denote an optimal solution of (1.2) and write

z∗ = (. . . , rje
iβj , . . .)T

j=1,...,n,

with rj ≥ 0. Then, for any `, we have from |hj`| ≤ η̄j for all j that

1 ≤ |hH
` z∗| ≤ r :=

n∑

j=1

rj η̄j .

Also, we have

υqp = ‖z∗‖2 =
n∑

j=1

r2
j .

Define

Rk :=


 ∑

j∈Ĵk

r2
j




1/2

, Sk :=
∑

j∈Ĵk

rj η̄j .

Then

1 ≤ r =
N∑

k=1

Sk, υqp =
N∑

k=1

R2
k.

Without loss of generality, assume that R1/S1 = mink Rk/Sk. Then, using the fact that

min
k

|xk|
|yk| ≤

√
N
‖x‖2
‖y‖1

for any x, y ∈ IRN with y 6= 0,4 we see from the above relations that

R1

S1
≤ R1

S1
r

≤
√

N

√
υqp

r
r

=
√

N
√

υqp .

Since |Ĵ1| ≤ |J |, there is an injective mapping π from Ĵ1 to J . Let ω := minj∈Ĵ1
η

π(j)
/η̄j . Define

the vector z̄ ∈ ICn by

z̄j :=
{

rπ−1(j)/(S1ω cos φ) if j ∈ π(Ĵ1);
0 else.

4Proof. Suppose the contrary, so that for some x, y ∈ IRN with y 6= 0, we have |xk|/|yk| >
√

N‖x‖2/‖y‖1 for all

k. Then, multiplying both sides by |yk| and summing over k yields ‖x‖1 >
√

N‖x‖2, contradicting properties of 1-

and 2-norms.
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Then,

‖z̄‖2 =
R2

1

S2
1ω2 cos2 φ

≤ Nυqp

ω2 cos2 φ
.

Moreover, for each ` ∈ K1, since π(Ĵ1) ⊆ J ⊆ J1
` , we have

Re
(
hH

` z̄
)

= Re


 ∑

j∈π(Ĵ1)

hH
j`z̄j




=
1

S1ω cos φ
Re


 ∑

j∈π(Ĵ1)

rπ−1(j)|hj`|e−iφj`




=
1

S1ω cos φ

∑

j∈π(Ĵ1)

rπ−1(j)|hj`| cosφj`

≥ 1
S1ω cos φ

∑

j∈π(Ĵ1)

rπ−1(j)ηj
cosφ

=
1

S1ω

∑

j∈Ĵ1

rj η̄j

η
π(j)

η̄j

≥ 1
S1ω

∑

j∈Ĵ1

rj η̄j · min
j∈Ĵ1

η
π(j)

η̄j

= 1,

where the first inequality uses |hj`| ≥ η
j

and φj` ∈ [−φ, φ] for j ∈ J1
` . Since z̄j = 0 for j 6∈ J1

` , this
shows that z̄ satisfies the first set of constraints in (4.1). A similar reasoning shows that z̄ satisfies
the remaining three sets of constraints in (4.1).

Notice that the z̄ constructed in the proof of Theorem 4.1 is feasible for the further restriction
of (4.1) whereby zj = 0 for all j 6∈ J . This further restricted problem has the same (worst-case)
approximation bound specified in Theorem 4.1.

Let us compare the two approximation bounds in Theorem 3.7 and Theorem 4.1. First, the
required assumptions are different. On the one hand, the bound in Theorem 3.7 does not depend
on |hj`|, while the bound in Theorem 4.1 does. On the other hand, Theorem 3.7 requires that the
bounded angular spread

|φj` − φi`| ≤ 2φ ∀ j, `,(4.2)

for some φ < π/4, while Theorem 4.1 allows φ < π/2 and only requires the condition (4.2) for
all 1 ≤ ` ≤ M and j ∈ J , where J is a pre-selected index set. Thus, the bounded angular
spread condition required in Theorem 3.7 corresponds exactly to |J | = n. Thus, the assumptions
required in the two theorems do not imply one another. Second, the two performance ratios are
also different. Naturally, the final performance ratio in Theorem 4.1 depends on the choice of
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J through the ratio |J |/n, so a large J is preferred. In the event that the assumptions of both
theorems are satisfied and let us assume for simplicity that η̄j = η

j
for all j, then |J | = n and

φ < π/4, in which case Theorem 4.1 gives a performance ratio of 1/ cos2 φ while Theorem 3.7 gives
1/ cos(2φ). Since cos(2φ) = cos2 φ− sin2 φ ≤ cos2 φ, we have 1/ cos(2φ) ≥ 1/ cos2 φ, showing that
Theorem 4.1 gives a tighter approximation bound. However, this does not mean Theorem 4.1 is
stronger than Theorem 3.7 since the two theorems hold under different assumptions in general.

We can specialize Theorem 4.1 to a typical situation in transmit beamforming. Consider a
uniform linear transmit antenna array consisting of n elements, and let us assume that the M

receivers are in a sector area from the far field, and the propagation is line-of-sight. By reciprocity,
each steering vector h` will be Vandermonde with generator e−i2π d

λ sin θ` (see, e.g., [10]), where d

is the inter-antenna spacing, λ is the wavelength, and θ` is the angle of arrival of the `th receiving
antenna. In a sector of approximately 60 degrees about the array broadside, we will have |θ`| ≤ π/3.
Suppose that d/λ = 1/2. Then the steering vector corresponding to the `th receiving antenna will
have the form

h` = (. . . , e−i(j−1)π sin θ` , . . .)T
j=1,...,n.

In this case, we have that φj` = (j − 1)π sin θ` and |hj`| = 1 for all j and `. We can take, e.g.,

φ̄j = 0, φ = j̄π max
`
| sin θ`|, J = {1, ..., j̄ + 1},

where j̄ := b1/ max` | sin θ`|c. Thus, the assumptions of Theorem 4.1 are satisfied. Moreover, since
|θ`| ≤ π/3 for all `, it follows that |J | = j̄ + 1 ≥ 2. If n is not large, say, n ≤ 8, then Theorem 4.1
gives a performance ratio of n/(|J | cos2 φ) ≤ 16.

More generally, if we can choose the partition Ĵ1, ..., ĴN and the mapping πk in Theorem 4.1
such that

(. . . , η̄j , . . .)j∈Ĵk
= (. . . , η

πk(j)
, . . .)j∈J ∀ k,

then the performance ratio in Theorem 4.1 simplifies to N/ cos2 φ. In particular, this holds when
|hj`| = η > 0 for all j and ` or when J = {1, ..., n} (so that N = 1) and |hj`| is independent of `

for all j, and more generally, when the channel coefficients periodically repeat their magnitudes.
In general, we should choose the partition Ĵ1, ..., ĴN and the mapping πk to make the performance
ratio in Theorem 4.1 small. For example, if J = Ĵ1 = {1, 2} and η̄1 = 100, η̄2 = 10, η

1
= 1,

η
2

= 10, then π1(1) = 2, π1(2) = 1 is the better choice.

5. Homogeneous QP in Maximization Form. Let us now consider the following complex
norm maximization problem with convex homogeneous quadratic constraints:

υqp := max ‖z‖2
s.t.

∑

`∈Ii

|hH
` z|2 ≤ 1, i = 1, ..., m,

z ∈ ICn,

(5.1)

where h` ∈ ICn.
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To motivate this problem, consider the problem of designing an intercept beamformer5 capable
of suppressing signals impinging on the receiving antenna array from irrelevant or hostile emitters,
e.g., jammers, whose steering vectors (spatial signatures, or “footprints”) have been previously
estimated, while achieving as high gain as possible for all other transmissions. The jammer sup-
pression capability is captured in the constraints of (5.1), and |Ii| > 1 covers the case where a
jammer employs more than one transmit antennas. The maximization of the objective ‖z‖2 can
be motivated as follows. In intercept applications, the steering vector of the emitter of interest,
h, is a priori unknown, and is naturally modelled as random. A pertinent optimization objective
is then the average beamformer output power, measured by E[|hHz|2]. Under the assumption
that the entries of h are uncorrelated and have equal average power, it follows that E[|hHz|2] is
proportional to ‖z‖2, which is often referred to as the beamformer’s white noise gain.

Similar to (1.1), we let

Hi :=
m∑

`∈Ii

h`h
H
`

and consider the natural SDP relaxation of (5.1):

υsdp := max Tr(Z)
s.t. Tr(HiZ) ≤ 1, i = 1, ..., m,

Z º 0, Z is complex and Hermitian.
(5.2)

We are interested in lower bounds for the relaxation performance of the form

υqp ≥ C υsdp ,

where 0 < C ≤ 1. It is easily checked that (5.2) has an optimal solution.

Let Z∗ be an optimal solution of (5.2). We will analyze the performance of the SDP relaxation
using the following randomization procedure:

1. Generate a random vector ξ ∈ ICn from the complex-valued normal distri-
bution Nc(0, Z∗).

2. Let z∗(ξ) = ξ/ max
1≤i≤m

√
ξHHiξ.

First, we need the following lemma analogous to Lemmas 3.1 and 3.4.

Lemma 5.1. Let H ∈ ICn×n, Z ∈ ICn×n be two Hermitian positive semidefinite matrices (i.e.,
H º 0, Z º 0). Suppose ξ ∈ ICn is a random vector generated from the complex-valued normal
distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ > γE(ξHHξ)

) ≤ r̄ e−γ ,(5.3)

where r̄ := min{rank(H), rank(Z)}.
5Note that here we are talking about a receive beamformer, as opposed to our earlier motivating discussion of

transmit beamformer design.
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Proof. If H = 0, then (5.3) is trivially true. Suppose H 6= 0. Then, as in the proof of
Lemma 3.1, we have

Prob
(
ξHHξ > γE(ξHHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 > γ

)
,

where λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄r̄ ≥ 0 satisfy λ̄1 + · · · + λ̄r̄ = 1 and each ξ̄i ∈ IC has the complex-valued
normal distribution Nc(0, 1). Then

Prob
(
ξHHξ > γE(ξHHξ)

) ≤ Prob
(|ξ̄1|2 > γ or |ξ̄2|2 > γ or · · · or |ξ̄r̄|2 > γ

)

≤
r̄∑

i=1

Prob
(|ξ̄i|2 > γ

)

= r̄ e−γ ,

where the last step uses (3.8).

Theorem 5.2. For the complex QP (5.1) and its SDP relaxation (5.2), we have vsdp = vqp if
m ≤ 3 and otherwise

vqp ≥ 1
4 ln(100K)

vsdp,

where K :=
∑m

i=1 min{rank(Hi),
√

m}.
Proof. By applying a suitable rank reduction procedure if necessary, we can assume that the

rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and r ≤ √
m if m ≥ 4; see [9, §5].

Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some z∗ ∈ ICn and it is readily seen that z∗ is an optimal
solution of (5.1), so that vsdp = vqp. Otherwise, we apply the randomization procedure to Z∗. By
using Lemma 5.1, we have, for any γ > 0 and µ > 0,

Prob
(

max
1≤i≤m

ξHHiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

≥ 1−
m∑

i=1

Prob
(
ξHHiξ > γE(ξHHiξ)

)− Prob
(‖ξ‖2 < µTr(Z∗)

)

≥ 1−Ke−γ − Prob
(‖ξ‖2 < µTr(Z∗)

)
,(5.4)

where the last step uses r ≤ √
m.

Let

ηj :=
{ |ξj |2/Z∗jj , if Z∗jj > 0;

0, if Z∗jj = 0,
j = 1, ..., n.

For simplicity, let us assume that Z∗jj > 0 for all j = 1, ..., n. Since ξj ∼ Nc(0, Z∗jj), as we discussed
in Subsection 3.2, |ξj | follows a Weibull distribution with variance Z∗jj (see (3.8)), and therefore

Prob (ηj ≤ t) = 1− e−t ∀ t ∈ [0,∞).
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Hence,

E(ηj) =
∫ ∞

0

te−tdt = 1, E(η2
j ) =

∫ ∞

0

t2e−tdt = 2, Var(ηj) = 1.

Moreover,

E(|ηj − E(ηj)|) =
∫ 1

0

(1− t)e−tdt +
∫ ∞

1

(t− 1)e−tdt =
2
e
.

Let us denote λj = Z∗jj/Tr(Z∗), j = 1, ..., n, and η :=
∑n

j=1 λjηj . We have E(η) = 1 and

E(|η − E(η)|) = E




∣∣∣∣∣∣

n∑

j=1

λj(ηj − E(ηj))

∣∣∣∣∣∣


 ≤

n∑

j=1

λjE(|ηj − E(ηj)|) =
2
e
.

Since, by Markov’s inequality,

Prob (|η − E(η)| > α) ≤ E(|η − E(η)|)
α

≤ 2
αe

, ∀ α > 0,

we have

Prob
(‖ξ‖2 < µTr(Z∗)

)
= Prob (η < µ)

≤ Prob (|η − E(η)| > 1− µ)

≤ 2
e(1− µ)

, for all µ ∈ (0, 1).

Substituting the above inequality into (5.4), we obtain

Prob
(

max
1≤i≤m

ξHHiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

> 1−Ke−γ − 2
e(1− µ)

, ∀ µ ∈ (0, 1).

Setting µ = 1/4 and γ = ln(100K) yields a positive right-hand side of 0.00898.., which then proves
the desired bound.

The above proof technique also applies to the real case, i.e., h` ∈ IRn and z ∈ IRn. The main
difference is that ξ ∼ N(0, Z∗), so that |ξ̄i|2 in the proof of Lemma 5.1 and ηj in the proof of
Theorem 5.2 both follow a χ2 distribution with one degree of freedom. Then

Prob
(|ξ̄i|2 > γ

)
=

∫ ∞

√
γ

e−t2/2

√
2π

dt ≤
∫ ∞

√
γ

e−γt/2

√
2π

dt =
√

2
πγ

e−γ/2, ∀ γ > 0,

E(ηj) = 1, and

E|ηj − E(ηj)| =
∫ ∞

0

e−t/2

√
2πt

|t− 1|dt

=
1√
2π

∫ 1

0

e−t/2

√
t

dt− 1√
2π

∫ 1

0

√
te−t/2dt

+
1√
2π

∫ ∞

1

√
te−t/2dt− 1√

2π

∫ ∞

1

e−t/2

√
t

dt

=
4√
2πe

< 0.968,
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where in the last step we used integration by parts on the first and the fourth terms. This yields
the analogous bound that, for any γ ≥ 1 and µ ∈ (0, 1),

Prob
(

max
1≤i≤m

ξT Hiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

> 1−K

√
2

πγ
e−γ/2 − 0.968

1− µ
> 1−Ke−γ/2 − 0.968

1− µ
,

where K :=
∑m

i=1 min{rank(Hi),
√

2m}. Setting µ = 0.01 and γ = 2 ln(50K) yields a positive
right-hand side of 0.0022... This in turn shows that vsdp = vqp if m ≤ 2 (see the proof of Theorem
3.3) and otherwise

vqp ≥ 1
200 ln(50K)

vsdp.

We note that, in the real case, a sharper bound of

vqp ≥ 1
2 ln(2mµ)

vsdp,

where µ := min{m,maxi rank(Hi)}, was shown by Nemirovski, Roos and Terlaky [14] (also see
[13, Theorem 4.7]), though the above proof seems simpler. Also, an example in [14] shows that the
O(1/ ln m) bound is tight (up to a constant factor) in the worst case. This example readily extends
to the complex case by identifying ICn with IR2n and observing that |hH

` z| ≥ |Re(h`)T Re(z) +
Im(h`)T Im(z)| for any h`, z ∈ ICn. Thus, in the complex case, the O(1/ ln m) bound is also tight
(up to a constant factor).

6. Discussion. In this paper, we have analyzed the worst-case performance of SDP relaxation
and convex restriction for a class of NP-hard quadratic optimization problems with homogeneous
quadratic constraints. Our analysis is motivated by important emerging applications in transmit
beamforming for physical layer multicasting and sensor localization in wireless sensor networks.
Our generalization (1.1) of the basic problem in [20] is useful, for it shows that the same convex
approximation approaches and bounds hold in the case where each multicast receiver is equipped
with multiple antennas. This scenario is becoming more pertinent with the emergence of small and
cheap multi-antenna mobile terminals. Furthermore, our consideration of the related homogeneous
QP maximization problem has direct application to the design of jam-resilient intercept beamform-
ers. In addition to these timely topics, more traditional signal processing design problems can be
cast in the same mathematical framework; see [20] for further discussions.

While theoretical worst-case analysis is very useful, empirical analysis of the ratio υqp
υsdp

through

simulations with randomly generated steering vectors {h`} is often equally important. In the
context of transmit beamforming for multicasting [20] for the case |Ii| = 1 ∀ i (single receiving
antenna per subscriber node), simulations have provided the following insights:

• For moderate values of m, n (e.g., m = 24, n = 8), and independent and identically
distributed (i.i.d.) complex-valued circular Gaussian (i.i.d. Rayleigh) entries of the steering
vectors {h`}, the average value of υqp

υsdp
is under 3 – much lower than the worst-case value

predicted by our analysis.
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Fig. 6.1. Upper bound on
υqp
υsdp

for m = 8, n = 4, 300 realizations of real Gaussian i.i.d. steering vector

entries, solution constrained to be real.

• In all generated instances where all steering vectors have positive real and imaginary parts,
the ratio υqp

υsdp
equals one (with error below 10−8). This is better than what our worst-case

analysis predicts for limited phase spread (see Theorem 3.7).
• In experiments with measured VDSL channel data, for which the steering vectors follow

a correlated log-normal distribution, υqp
υsdp

= 1 in over 50% of instances.

• Our analysis shows that the worst-case performance ratio υqp
υsdp

is smaller in the complex

case than in the real case (O(m) versus O(m2)). Moreover, this remains true with high
probability when υqp is replaced by its upper bound

υubqp := min
k=1,...,N

‖z∗(ξk)‖2,

where ξ1, ..., ξN are generated by N independent trials of the randomization procedure
(see Subsections 3.1 and 3.2) and N is taken sufficiently large. In our simulation, we used
N = 30nm. Figure 6.1 shows our simulation results for the real Gaussian case.6 It plots
υubqp
υsdp

for 300 independent realizations of i.i.d. real-valued Gaussian steering vector entries,
for m = 8, n = 4. Figure 6.2 plots the corresponding histogram. Figures 6.3 and 6.4
show the corresponding results for i.i.d. complex-valued circular Gaussian steering vector
entries.7 Both the mean and the maximum of the upper bound

υubqp
υsdp

are lower in the
complex case. The simulations indicate that SDP approximation is better in the complex
case not only in the worst case but also on average.

6Here the SDP solution is constrained to be real-valued, and real Gaussian randomization is used.
7Here the SDP solutions are complex-valued, and complex Gaussian randomization is used.
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Fig. 6.2. Histogram of the outcomes in Fig. 1.

The above empirical (worst-case and average-case) analysis complements our theoretical worst-
case analysis of the performance of SDP relaxation for the class of problems considered herein.

Finally, we remark that our worst-case analysis of SDP performance is based on the assumption
that the homogeneous quadratic constraints are concave (see (1.1)). Can we extend this analysis
to general homogeneous quadratic constraints? The following example in IR2 suggests that this is
not possible.

Example 3: For any L > 0, consider the quadratic optimization problem with homogeneous
quadratic constraints:

min ‖z‖2
s.t. z2

2 ≥ 1, z2
1 − Lz1z2 ≥ 1, z2

1 + Lz1z2 ≥ 1,

z ∈ IR2.

(6.1)

The last two constraints imply z2
1 ≥ L|z1||z2|+ 1 which, together with the first constraint z2

2 ≥ 1,
yield z2

1 ≥ L|z1| + 1 or, equivalently, |z1| ≥ (L +
√

L2 + 4)/2. So the optimal value of (6.1) is at
least 1 + (L +

√
L2 + 4)2/4 (and in fact is equal to this). The natural SDP relaxation of (6.1) is

min Z11 + Z22

s.t. Z22 ≥ 1, Z11 − LZ12 ≥ 1, Z11 + LZ12 ≥ 1,

Z º 0.

Clearly, Z = I2 is a feasible solution (and, in fact, an optimal solution) of this SDP, with an
objective value of 2. Therefore, the SDP performance ratio for this example is at least 1/2 + (L +√

L2 + 4)2/8, which can be arbitrarily large.
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Transmit Beamforming for
Physical-Layer Multicasting

Nicholas D. Sidiropoulos, Senior Member, IEEE, Timothy N. Davidson, Member, IEEE, and
Zhi-Quan (Tom) Luo, Senior Member, IEEE

Abstract—This paper considers the problem of downlink
transmit beamforming for wireless transmission and downstream
precoding for digital subscriber wireline transmission, in the
context of common information broadcasting or multicasting
applications wherein channel state information (CSI) is available
at the transmitter. Unlike the usual “blind” isotropic broadcasting
scenario, the availability of CSI allows transmit optimization.
A minimum transmission power criterion is adopted, subject to
prescribed minimum received signal-to-noise ratios (SNRs) at
each of the intended receivers. A related max–min SNR “fair”
problem formulation is also considered subject to a transmitted
power constraint. It is proven that both problems are NP-hard;
however, suitable reformulation allows the successful applica-
tion of semidefinite relaxation (SDR) techniques. SDR yields an
approximate solution plus a bound on the optimum value of the
associated cost/reward. SDR is motivated from a Lagrangian
duality perspective, and its performance is assessed via pertinent
simulations for the case of Rayleigh fading wireless channels. We
find that SDR typically yields solutions that are within 3–4 dB of
the optimum, which is often good enough in practice. In several
scenarios, SDR generates exact solutions that meet the associated
bound on the optimum value. This is illustrated using measured
very-high-bit-rate Digital Subscriber line (VDSL) channel data,
and far-field beamforming for a uniform linear transmit antenna
array.

Index Terms—Broadcasting, convex optimization, downlink
beamforming, minimization of total radiation power, multicas-
ting, semidefinite programming, semidefinite relaxation (SDR),
very-high-bit-rate Digital Subscriber line (VDSL) precoding.

I. INTRODUCTION

CONSIDER a transmitter that utilizes an antenna array to
broadcast information to multiple radio receivers within a

certain service area. The traditional approach to broadcasting is
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to radiate transmission power isotropically, or with a fixed direc-
tional pattern. However, future digital video/audio/data broad-
casting and multicasting applications are likely to be based on
subscription to services; hence, it is plausible to assume that the
transmitter can acquire channel state information (CSI) for all
its intended receivers.

The goal of this paper is to develop efficient algorithms for
the design of broadcasting schemes that exploit this channel
information in order to provide better performance than the
traditional approaches.

Our design approach is based on providing Quality of Ser-
vice (QoS) assurance to each of the receivers. Since the received
signal-to-noise ratio (SNR) determines the maximum achiev-
able data rate and (essentially) determines the probability of
error, it is an effective measure of the QoS. We consider two
basic design problems. The first seeks to minimize the total
transmission power (and thus leakage to neighboring cochannel
transmissions), subject to meeting (potentially different) con-
straints on the received SNR for each individual intended re-
ceiver. The second is a “fair” design problem in which we at-
tempt to maximize the smallest receiver SNR over the intended
receivers, subject to a bound on the transmitted power. We will
show that both these problems are NP-hard, but we will also
show that designs that are close to being optimal can be effi-
ciently obtained by employing semidefinite relaxation (SDR)
techniques.

Our designs are initially developed for a wireless broadcast
scenario in which each user employs a single receive antenna
and the channel is modeled as being flat in frequency and quasi-
static in time. However, the designs are also appropriate on a
per-tone basis for orthogonal-frequency-division multiplexing
(OFDM) and related multicarrier systems, and, as we will show,
they can be generalized in a straightforward manner to single-
carrier systems transmitting over frequency-selective channels.
In addition to wireless systems, applications of the proposed
methodology also appear in downstream multicast transmission
for multicarrier and single-carrier digital subscriber line (DSL)
systems. In this context, (linear) precoding of multiple DSL
loops in the same binder that wish to subscribe to a common ser-
vice (e.g., news feed, video-conference, or movie multicast) can
be employed to improve QoS and/or reduce far-end crosstalk
(FEXT) interference to other loops in the binder. In scenarios in
which the customer-premise equipment (CPE) receivers are not
physically co-located (as in residential service) or cannot be co-
ordinated (legacy CPE), multiuser decoding of the downstream
transmission is not feasible, while transmit precoding is viable.
The most important difference between DSL and the wireless

1053-587X/$20.00 © 2006 IEEE
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multicast scenario is that DSL channels are diagonally domi-
nated. Still, exploiting the crosstalk coupling to reduce FEXT
levels to other loops in the binder can provide significant per-
formance gains, especially if (cooperative or competitive) power
control is implemented.

It is interesting to note that, as of today, Internet multicas-
ting (using IP’s Multicast Backbone—MBone) is performed at
the network layer, e.g., via packet-level flooding or spanning-
tree access of the participant nodes and any intermediate nodes
needed to access the participants. To complement that approach,
what we advocate herein can be interpreted as judicious phys-
ical layer multicasting, that is, enabled by i) the availability of
multiple transmitting elements; ii) exploiting opportunities for
joint beamforming/precoding; and iii) the availability of CSI at
the transmitting node or one of its proxies. This is a cross-layer
optimization approach that exploits information available at the
physical layer to reduce relay retransmissions at the network
layer, thus providing congestion relief and QoS guarantees.

Notation: We use lowercase boldface letters to denote
column vectors and uppercase bold letters to denote matrices.

denotes transpose, while denotes Hermitian (conju-
gate) transpose. extracts the real part of its argument,
and the imaginary part.

II. DATA MODEL AND PROBLEM STATEMENT

Consider a wireless scenario incorporating a single trans-
mitter with antenna elements and receivers each with
a single antenna. Let denote the complex vector
that models the propagation loss and phase shift of the fre-
quency-flat quasi-static channel from each transmit antenna
to the receive antenna of user , and let
denote the beamforming weight vector applied to the
transmitting antenna elements. If the signal to be transmitted
is zero-mean and white with unit variance, and if the noise1

at receiver is zero-mean and white with variance , then
the receiver SNR for the th user is . Let
be the prescribed minimum SNR for the th user and define
the normalized channel vectors . Then

. Therefore, the design
of the beamformer that minimizes the transmitted power, sub-
ject to (possibly different) constraints on the received SNR of
each user, can be written as

subject to:

We will denote an instance of problem as ,
keeping in mind that .

Remark 1: One could think of imposing the stricter con-
straints , in order to avoid the need for single-tap
equalization at the receivers. However, we are interested in the
practically important case of , wherein the stricter con-
straints generically yield an overdetermined system of equa-
tions, and thus an infeasible problem. On the other hand, it is

1The noise may include unmodeled interference.

easy to see that problem is always feasible, provided of course
that none of the channel vectors is identically zero.

Problem is formulated under the assumption that the design
center (usually the transmitter) has knowledge of the channel
vector (and the noise variance ) for each user. This can
be accomplished in a straightforward manner in fixed wireless
systems and time-division-duplex (TDD) systems. In other sys-
tems, it can be accomplished through the use of beacon signals,
periodically transmitted from the broadcasting station (and typ-
ically embedded in the transmission). The receiving radios can
then feed back their CSI through a feedback channel. For the
purposes of this paper, we will assume that the design center
has perfect knowledge of the channel vectors, but extensions to
cases of imperfect knowledge are under development.

Problem is a quadratically constrained quadratic program-
ming (QCQP) problem, but unfortunately the constraints are not
convex.2 Nonconvexity, per se, does not mean that the problem is
difficult to solve; however, we have the following claim, whose
proof can be found in Appendix I.

Claim 1: The QoS problem is NP-hard.
The implication of Claim 1 is that if an algorithm could solve

an arbitrary instance of problem in polynomial time, it would
then be possible to solve a whole class of computationally very
difficult problems in polynomial time [4]. The current scientific
consensus indicates that this is unlikely.

A. Review of Pertinent Prior Art

The above problem is reminiscent of some closely related
problems. For , the optimum is a matched filter. When
the scaled channel vectors span a ball or ellipsoid about a
“nominal” channel vector,3 the problem can be transformed ex-
actly into a second-order cone program, and hence can be ef-
ficiently solved [13]. Unfortunately, this transformation cannot
be employed in the case of finitely many channel vectors (in-
tended receivers).

Another closely related work is that in [1] (and references
therein), which considers the problem of multiuser transmit
beamforming for the cellular downlink. The key difference be-
tween [1] and our formulation is that the authors of [1] consider
the transmission of independent information to each of the
downlink users, whereas we focus on (common information)
multicast. The mathematical problems are not equivalent. A
fundamental difference is that our problem is NP-hard, whereas
the formulation in [1] can be efficiently solved. To further
appreciate the difference intuitively, we point out that in the
generic case of our formulation most of the SNR constraints
will be inactive at the optimum (i.e., most of the constraints will
be oversatisfied). Consider, for example, the case of two closely
located receivers with different SNR requirements: one of the
two associated constraints will be oversatisfied at the optimum.
On the other hand, it is proven in [1] that in the formulation of
[1] the constraints are always met with equality at the optimum.
The important common denominator of our work and [1] is the
use of semidefinite programming tools.

2This is easy to see for N = 1, in which case each constraint requires that
the magnitude of w be greater than a constant.

3This implies a continuum of intended receivers.
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Transmit beamforming for the dissemination of common in-
formation to multiple users has been considered in the Ph.D.
dissertation of Lopez [7, ch. 5]. Lopez proposed maximizing
the sum of received SNRs, which is equivalent to maximizing
the average SNR over all users. This formulation leads to a prin-
cipal component computational problem for the optimum beam-
former, which is relatively simple to solve. The drawback is that
quality of service cannot be guaranteed to all users in this way.
This is important, because the weakest user link determines the
common information rate. Still, the work of Lopez is the closest
in spirit to ours, and for this reason we will include the max-
imum average SNR approach in our performance evaluations in
Section VIII (see Table V).

III. RELAXATION

Toward solving our problem, we first recast it as follows:

subject to:

where we have used the fact that
, and we have de-

fined . Now consider the following reformulation
of the problem:

subject to:

where now is an complex matrix, and the inequality
means that the matrix is symmetric positive semidef-

inite. Note that, in the above equivalent formulation of our
problem, the cost function is linear in ; the trace constraints
are linear inequalities in , and the set of symmetric positive
semidefinite matrices is convex; however, the rank constraint
on is not convex.4 The important observation is that the
above problem is in a form suitable for semidefinite relaxation
(SDR) (see, e.g., [9] and references therein); that is, dropping
the rank-one constraint, one obtains the relaxed problem

subject to: and

which is a semidefinite programming problem (SDP), albeit not
yet in standard form. In order to put it in standard form, we add

“slack” variables , , one for each trace
constraint. In this way, we obtain the program

s.t.:

and

4The sum of two rank-one matrices has generic rank two.

which is now expressed in a standard form used by SDP solvers,
such as SeDuMi [11]. Here, is the identity matrix of size

.
SDP problems can be efficiently solved using interior point

methods, at a complexity cost that is at most
and is usually much less. SeDuMi [11] is a MATLAB imple-
mentation of modern interior point methods for SDP that is par-
ticularly efficient for up to moderate-sized problems, as is the
case in our context. Typical run times for realistic choices of
and are under 1/10 s, on a typical personal computer.

IV. ALGORITHM

Due to the relaxation, the matrix obtained by solving
the SDP in Problem will not be rank one in general. If it
is, then its principal component will be the optimal solution
to the original problem. If not, then is a lower
bound on the power needed to satisfy the constraints. This
comes from the fact that we have removed one of the orig-
inal problem’s constraints. Researchers in optimization have
recently developed ways of generating good solutions to the
original problem, , from , [9], [12], [15]. This process
is based on randomization: using to generate a set of
candidate weight vectors, , from which the “best” solution
will be selected. We consider three methods for generating the

’s, which have been designed so that their computational
cost is negligible compared to that of computing . (For
consistency, the principal component is also included in the set
of candidates.) In the first method (randA), we calculate the
eigen-decomposition of and choose such
that , where the elements of are independent
random variables, uniformly distributed on the unit circle in
the complex plane; i.e., , where the are inde-
pendent and uniformly distributed on . This ensures that

, irrespective of the particular realization
of . In the second method (randB), inspired by Tseng [12],
we choose such that , which ensures
that . The third method (randC), motivated
by successful applications in related QCQP problems [8], uses

, where is a vector of zero-mean, unit-vari-
ance complex circularly symmetric uncorrelated Gaussian
random variables. This ensures that [8].

For both randA and randB, , and
hence when , at least one of the constraints

will be violated.5 However, a feasible weight
vector can be found by simply scaling so that all the con-
straints are satisfied. Under randC, depends on the
particular realization of , but again the resulting can be
scaled to the minimum length necessary to satisfy the con-
straints. The “best” of these randomly generated weight vectors
is the one that requires the smallest scaling. For convenience,
we have summarized the algorithm in Table I, which includes a
simple MATLAB interface to SeDuMi [11] for the solution of
the semidefinite relaxation, . We point out that we have not
yet been able to obtain theoretical a priori bounds on the extent

5Recall that because of the relaxation, trace(X ) is a lower bound on the
energy of the optimal weight vector for the original problem.
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TABLE I
BROADCAST QoS BEAMFORMING VIA SDR: ALGORITHM

of the suboptimality of solutions generated in this way, but our
simulation results are quite encouraging.

V. MAX–MIN FAIR BEAMFORMING

We now consider the related problem of maximizing the min-
imum received SNR over all receivers, subject to a bound on the
transmitted power. That is

subject to:

It is easy to see that the constraint in problem should be met
with equality at an optimum, for otherwise could be scaled up,
thereby improving the objective and contradicting optimality.
Thus, we can focus on the equality-constrained problem. With
a scaling of the optimization variable , the equality-
constrained problem can be equivalently written as

subject to:

It is clear that is immaterial with respect to optimization;
the solution scales up with , while the optimum value
scales up with . We will denote an instance of problem
as . Let be a solution to ,

and the associated minimum transmitted power. Consider

, that is

subject to:

and let denote an optimal solution. Since already attains

, , it follows that , . Hence,
also satisfies the constraints of the QoS formulation, and at the
same power as . It follows that is equivalent to . This
shows Claim 2.

Claim 2: is equivalent to up
to scaling. In the special case that , , we have

that , , and hence

is equivalent to up to scaling.
Corollary 1: One way to solve the max–min fair

problem is to solve the QoS problem

, then scale the resulting solution to the desired

power . Conversely, scaling the solution of

yields a solution to , even in the case of unequal
.

Remark 2: It is important not to lose sight of the fact
that is not equivalent up to scaling to

when the ’s are unequal. This can be intu-
itively appreciated by noting that the max–min fair formulation
aims to maximize the minimum received SNR, without regard
to the individual SNR constraints. The QoS formulation, on the
other hand, explicitly guarantees the prescribed minimum SNR
level at each node.

From the above, and Claim 1, Claim 3 follows.
Claim 3: The max-min fair problem is NP-hard.
If the QoS problem could be solved exactly, there would have

been no need for a separate algorithm for the max–min fair
problem. However, we can only solve the QoS problem ap-
proximately (cf., randomization postprocessing of the gener-
ally higher rank solution). Due to this, it is of interest to de-
velop a customized SDR algorithm directly for the max–min fair
problem. Using the fact that ,
and defining , we recast the max–min fair
problem as follows:

subject to:

Dropping the rank constraint, we obtain the relaxation

subject to:

Introducing an additional variable, , this relaxation can be
equivalently written as

subject to:
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TABLE II
BROADCAST MAX–MIN BEAMFORMING VIA SDR: ALGORITHM

Further introducing nonnegative real slack variables, one
for each inequality constraint, we convert the problem to an
equivalent one involving only equality, nonnegativity, and pos-
itive-semidefinite constraints

subject to:

This problem is formatted for direct solution via SeDuMi
[11]. Table II provides a suitable MATLAB interface for
solving this relaxation. Postprocessing of the solution of the
relaxed problem to approximate the solution of the original
max–min-fair problem can be accomplished using randA,
randB, and randC, but the selection criterion is different (see
Table II).

In closing this section, we would like to point out connections
between problems and and the problem of maximizing
the common mutual information of the (nondegraded) Gaussian
broadcast channel in which the transmitter has antennas and
each of the (noncooperative) receivers has a single antenna.
If denotes the covariance of the transmitted signal, then the
maximum achievable common information rate (in the sense of
Shannon) can be written as (see, e.g., [6] and references therein)

Alternatively, we can rewrite this max–min problem as

subject to

By the monotonicity of the “log” function, the above problem
is further equivalent to

subject to

in the sense that they yield the same optimal transmit covariance
matrix . The latter problem is identical to problem . In
other words, the semidefinite relaxation of problem actually
yields a transmit covariance matrix that achieves the maximum
common information rate . In a similar manner, we can argue
that the rank-one transmit covariance matrix obtained from
problem achieves the maximum common information rate
under the restriction that beamforming is employed. However,
the latter rate can be significantly lower than for a large
number of users [6]. Nonetheless, from a practical perspective,
beamforming is attractive because it is simple to implement,6

requiring only a single standard additive white Gaussian noise
(AWGN) channel encoder and decoder. In contrast, achieving
the maximum common information rate in general requires
higher rank transmit covariance matrix . In that case, a
weighted sum of multiple independent signals is transmitted
from each antenna, with each independent signal requiring
a separate AWGN channel encoder and decoder. Hence, the
beamforming strategy considered in this paper trades off a
potential reduction in the maximum common information rate
for implementation simplicity.

VI. CASE OF FREQUENCY-SELECTIVE MULTIPATH

Although we have focused our attention so far on fre-
quency-flat fading channels, the situation is quite similar in
the case of spatial beamforming7 for common information
transmission over frequency-selective (intersymbol interfer-
ence) channels. Let denote the th vector tap of
the baseband-equivalent discrete-time impulse response of the
multipath channel between the transmitter antenna array and

6A properly weighted common temporal signal is transmitted from each an-
tenna.

7It is perhaps worth emphasizing that, while space–time precoding would
generally be preferable from a performance point of view when the channels
are time dispersive, we (continue to) consider spatial beamforming only in this
section. This is motivated from a complexity point of view. Space–time multi-
cast precoding is an interesting topic for future research.
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the (single) receive antenna of receiver . Assume that delay
spread is limited8 to nonzero vector channel taps. Define the
channel matrix for the th receiver as

Beamforming the transmit array with a fixed (time-invariant)
yields a scalar equivalent channel from the viewpoint of

the th receiver, whose scalar taps are given by

or, in vector form

Now, if a Viterbi equalizer is used for sequence estimation at the
receiver, then the parameter that determines performance is [3]

where now and is generally of higher rank
than before, but otherwise things remain conceptually the
same. In particular, the relaxations and and the algo-
rithms in Tables I and II can be employed as they were in the
frequency-flat case—only the definition of the input matrices
changes.

VII. INSIGHTS AFFORDED VIA DUALITY

Let us return to our original problem , as follows:

subject to:

We will now gain some insight into the quality of the so-
lution generated by the semidefinite relaxation of using
bounds obtained from duality. For convenience, we first con-
vert the problem to real-valued form; this yields a
vector of real variables , and
the ’s are now symmetric matrices of rank 2:

, where

and . Problem can then be
rewritten as

subject to:

The Lagrangian of problem is [2]

and the dual problem is

8or, essentially limited; the remaining taps can be treated as interference.

where denotes . If the symmetric matrix
has a negative eigenvalue, then it is easy to see that

the quadratic term in is unbounded from below (e.g.,
choose proportional to the corresponding eigenvector). If, on
the other hand, all eigenvalues are greater than or equal to zero,
then the said matrix is positive semidefinite and the minimum
over is attained, e.g., at . This yields the following
equivalent of the dual problem:

subject to:

which is a semidefinite program.
The dual problem is interesting, because the maximum of the

dual problem is a lower bound on the minimum of the original
(primal) problem [2]. The dual problem is convex by virtue of its
definition, however the particular dual studied above is special
in the sense that optimization over for a given can be carried
out analytically, and the residual -optimization problem is an
SDP. This means that we can solve the dual problem and thus
obtain the tightest bound obtainable via duality. This duality-de-
rived bound can be compared to the SDR bound we used ear-
lier. Let denote the dual of a given optimization problem,
and let denote the semidefinite relaxation of , obtained
by dropping the associated rank-one constraint. Furthermore, let

denote the optimal value of a given optimization problem.
Theorem 1: [14, pp. 403–404] and

.
More specifically, Theorem 1 states that the dual of the dual

of is the SDR of and that the optimal objective value of the
SDR of is the same as the optimal objective value of the dual
of . Hence, SDR yields the same lower bound on the optimal
value of as that obtained from duality, and the associated gap
between this bound and the optimal value is equal to the duality
gap.

Theorem 1 along with Claim 2 directly yield the following
corollary for the max–min-fair problem .

Corollary 2: and
.

VIII. SIMULATION RESULTS

An appropriate figure of merit for the performance of the pro-
posed algorithm for the QoS beamforming problem would
be the ratio of the minimum transmitted power achieved by the
proposed algorithm and , the transmitted power achieved
by the (true) optimal solution. Unfortunately, problem is
NP-hard, and thus can be difficult to compute. However,
we can replace in the figure of merit by the lower bound
obtained from the SDR; i.e., . If
we let denote the sequence of candidate weight vectors
generated via randomization, and denote the minimally
scaled version of that satisfies the constraints of problem

, then a meaningful and easily computable figure of merit is
. We will call this ratio the upper
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TABLE III
MC SIMULATION RESULTS FOR QoS BEAMFORMING: MEAN

AND STANDARD DEVIATION OF UPPER BOUND ON POWER BOOST.
EACH ELEMENT OF h IS i.i.d. WITH A CIRCULARLY SYMMETRIC

COMPLEX GAUSSIAN (RAYLEIGH) DISTRIBUTION OF VARIANCE 1.
ALL THREE RANDOMIZATION TECHNIQUES (randA, randB,

randC) ARE USED IN PARALLEL, FOR 1000
RANDOMIZATIONS EACH. � � = 1, 8i

TABLE IV
MC SIMULATION RESULTS FOR QoS BEAMFORMING: MEAN AND

STANDARD DEVIATION OF UPPER BOUND ON POWER BOOST. HERE,
THE NUMBER OF POST-SDR randomizations = 30 NM . REMAINING

PARAMETERS ARE AS IN TABLE III

bound on the power boost required to satisfy the constraints. If
our algorithm achieves a power boost of , then the transmitted
power is guaranteed to be within a factor of that of the optimal
solution and will often be closer.

A. Rayleigh Fading Wireless Channels

We consider the standard independent and identically dis-
tributed (i.i.d.) Rayleigh fading model described in the caption
of Table III. That table summarizes the results obtained using
the direct QoS relaxation algorithm in Table I ( ,

) with all three randomization options (randA, randB, and
randC) employed in parallel, for a fixed number of 1000 ran-
domization samples each. Table IV summarizes results for the
same scenario, except that 30 randomization samples are
drawn for each randomization strategy—thus the number of ran-
domizations grows linearly in the problem size. Note that, in
many cases, our solutions are within 3–4 dB from the (gener-
ally optimistic) lower bound on transmitted power provided by
SDR, and thus are guaranteed to be at most 3–4 dB away from
optimal; this is often good enough from an engineering perspec-
tive. Comparing the corresponding entries in Tables III and IV,
it is evident that switching from 1000 to 30 randomiza-
tions per channel realization only yields a minor performance
improvement in the cases considered.

Table V summarizes our simulation results for max–min fair
beamforming, using the direct algorithm in Table II ( ,

, ). Table V presents Monte Carlo averages for the
upper bound on the minimum SNR (the optimum attained

TABLE V
MC SIMULATION RESULTS FOR MAX–MIN FAIR BEAMFORMING: AVERAGES

FOR THE UPPER BOUND ON min SNR , THE RELAXATION-ATTAINED

min SNR , THE min SNR ATTAINED BY MAXIMIZING AVERAGE

SNR (ACROSS USERS), AND THE min SNR FOR THE CASE OF NO

BEAMFORMING. THE RESULTS ARE AVERAGED OVER 1000
MONTE CARLO (MC) RUNS. FOR EACH MC RUN, THE

ELEMENTS OF h ARE INDEPENDENTLY REDRAWN FROM

A CIRCULARLY SYMMETRIC COMPLEX GAUSSIAN

DISTRIBUTION OF VARIANCE 1. � = 1, 8i, P = 1.
ALL THREE RANDOMIZATION TECHNIQUES (randA,
randB, randC) ARE USED IN PARALLEL, FOR

30 NM RANDOMIZATIONS EACH

in problem ), the SDR-attained minimum SNR (after ran-
domization), the minimum SNR attained by the maximum
average SNR beamformer9 [7, ch. 5], and the minimum SNR
for the case of no beamforming. For the latter, we have used

, which fixes transmitted power to 1. Under
the i.i.d. Rayleigh fading assumption, this is equivalent to
selecting an arbitrary transmit antenna, allocating the entire
power budget to it, and shutting off all others. To see this,
note that the sum channel viewed by any
particular receiver will still be Rayleigh, of the same variance
as the elements of . For this reason, we can view the beam-
forming vector as corresponding to no
beamforming at all. All three randomization options (randA,
randB, and randC) were employed in parallel, for 30
samples each. It is satisfying to note that the SDR solution
attains a significant fraction of the (possibly unattainable) upper
bound. Furthermore, the SDR technique provides a substantial
improvement in the average minimum SNR relative to no
beamforming and to maximum average SNR beamforming [7,
ch. 5]. Like SDR, maximum average SNR beamforming uses
full CSI at the transmitter. However, it is generally not mean-
ingful to compare designs produced under different objectives.
Accordingly, the maximum average SNR beamforming results
in Table V are only meant to convey an idea of how much QoS
improvement SDR can provide over computationally simpler
solutions that also exploit full CSI.

We observe from Tables III–V, that as and/or increase,
the quality of the approximate solution drifts away from the re-
spective relaxation/duality bound. This could be due to a variety
of factors, or combination thereof. First, the relaxation bound
may become more optimistic at higher and/or —remember
that it is only a bound, not necessarily a tight bound. If this is
true, then the apparent degradation may in fact be much milder
in reality. Second, the number of randomizations required to at-
tain a quasi-optimal solution may increase faster than linearly
in the product . Third, the approximation quality of the

9This beamformer maximizes the average SNR for each channel matrix re-
alization (Monte Carlo run), where the average is taken over the users. The re-
sulting beamforming vector is also scaled to unit norm.
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Fig. 1. Broadcast beamforming example using algorithm in Table I.
Optimized beam pattern for N = 8-element transmit ULA (d=� = 1=2)
and M = 24 downlink users, in six clusters of four users each. Clusters
centered at [�51;�31;�11;11;31;51] with extent �2 . Channel vectors
are Vandermonde, of element modulus 1. � = � , 8i, � = 1=� ,
8i (here, � also models propagation loss, in addition to thermal noise).
Symmetric lobes appear due to the inherent ULA ambiguity. randA, #
post-SDR randomizations = 300. In this case, the solution is guaranteed to be
within 0.1% of the optimum.

method per se may degrade as the problem size grows. In a re-
lated, but distinct, problem the quality of the SDR approxima-
tion degrades logarithmically in the problem size [10].

B. Far-Field Beamforming for a Uniform Linear Transmit
Antenna Array

In several scenarios, the solutions generated by the SDR tech-
nique are essentially optimal. This is illustrated in Fig. 1, which
shows the optimized transmit beampattern for a particular far-
field multicasting scenario using a uniform linear antenna array
(ULA); the details of the simulation setup are included in the
figure caption for ease of reference.

C. Measured VDSL Channels

In this section, we test the performance of our algorithms
using measured VDSL channel data collected by France
Telecom R&D as part of the EU-FP6 U-BROAD project #
506 790.

Gigabit VDSL technology for very short twisted copper
loops (in the order of 100–500 m) is currently under devel-
opment in the context of fiber to the basement (FTTB) or
fiber to the curb/cabinet (FTTC) hybrid access solutions. Mul-
tiple-input multiple-output (MIMO) transmission modalities
are an important component of gigabit VDSL. These so-called
vectoring techniques rely on transmit precoding and/or mul-
tiuser detection to provide reliable communication at very
high transmission rates [5]. Transmit precoding is particularly
appealing when the targeted receivers are not physically co-lo-
cated, or when legacy equipment is being used at the receive

site. In both cases, multiuser detection is not feasible. In this
context, media streaming (e.g., news-feed, pay-per-view, or
video-conferencing) may involve multiple recipients in the
same binder.

Let denote the number of loops subscribing to a given mul-
ticast. With multicarrier transmission, each tone can be viewed
as a flat-fading MIMO channel with inputs and outputs,
plus noise and alien interference. The diagonal of the channel
matrix consists of samples of the direct [insertion loss (IL)]
channel frequency responses, while off-diagonal elements
are drawn from the corresponding FEXT channel frequency
responses. Due to the noncoherent combining of the self-FEXT
coupling coefficients, the useful signal power received at each
output terminal is reduced, even when all inputs are fed with the
same information-bearing signal. That is, the equivalent channel
tap at frequency is ,
where denotes the direct (insertion loss) channel, and

denotes a generic FEXT interference channel.
Conceptually, the scenario is very similar to the wireless sce-

nario considered earlier, but with two key differences: now
, and the channel matrix is diago-

nally dominated, because FEXT coupling is much weaker than
insertion loss. The question then is whether transmit precoding
can provide a meaningful benefit relative to simply ignoring
FEXT altogether.

We use IL and far-end FEXT measured data for S88 cable
comprising 14 quads, i.e., 28 loops. The length of the cable is
300 m. For each channel, a log-frequency sweeping scheme was
used to measure the I/Q components of the frequency response
from 10 kHz to 30 MHz, yielding 801 complex samples per
channel. Cubic spline complex interpolation was used to con-
vert these samples to a linear frequency scale. We consider 17

channel matrices, with 14, in the frequency range
21.5 to 30 MHz. Insertion loss drops between 40 and 45 dB
in this range of frequencies, while FEXT coupling is between

77 and 82 dB in the mean, with over 10-dB standard de-
viation and significant variation across frequency as well. For
each channel matrix, we apply our max–min-fair beamforming
algorithm with , , and . Fig. 2 shows the
resulting plots of minimum received signal power, the associ-
ated relaxation/duality bound, and the minimum received signal
power when no precoding is used. We observe that SDR can
almost double the minimum received signal power relative to
no precoding, and it often attains zero gap relative to the relax-
ation/duality bound. For shorter loops (e.g., 100 m), the situation
is even more in favor of SDR, because then FEXT resembles
near-end crosstalk (NEXT) and is relatively more pronounced.

D. Further Observations

1) Comparison of the Two Relaxations: We have shown
theoretically that the two problem formulations (QoS, , and
max–min-fair, ) are algorithmically equivalent, i.e., had we
had an optimal algorithm that provides the exact solution to
one, it could have also been used to obtain the exact solution to
the other. What we have instead is two generally approximate
algorithms, obtained by direct relaxation of the respective
problems. The link between the two formulations can still
be exploited. For example, we may obtain an approximate
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Fig. 2. Transmit precoding for VDSL multicasting.

Fig. 3. Comparison of direct and indirect solutions to the max–min-fair
problem.

solution to the max–min-fair problem by first running the QoS
algorithm in Table I with all the , then scaling the
resulting solution to the desired power level . Of course, we
can also use the direct relaxation of the max–min-fair problem
in Table II. Due to approximation, there is no a priori reason to
expect that the two solutions will be identical, even in the mean.

In order to address this issue, we have compared the two
strategies by means of Monte Carlo simulation. We chose

, , , , and , and ran both algo-
rithms for 300 i.i.d. Rayleigh fading channels. All three random-
izations (randA, randB, randC) were employed in parallel,
for 30 randomization samples each. For each channel, we
recorded the percent gap (100 times the gap over the relaxation
bound) of each algorithm. Fig. 3 shows a portion of the results,
along with the mean percent gap attained by each algorithm (av-
eraged over all 300 channels). By “direct” we refer to the algo-
rithm in Table II, whereas by “indirect, ” we refer to the algo-
rithm in Table I with all , followed by scaling.

Fig. 4. Percent gap outcomes for 300 real Gaussian channel realizations.

We observe that the mean percent gaps of the two algorithms
are virtually identical, and in fact most of the respective per-
cent gaps are very close on a sample-by-sample basis. How-
ever, there are instances wherein each algorithm is significantly
better than the other (over 10% difference in the gap). Two pro-
nounced cases are highlighted by arrows in Fig. 3. We conclude
that, while both approaches are equally effective on average, it
pays to use both, if possible, in certain cases.

2) On the Dependence of Gap Statistics on Channel Statis-
tics: We have seen that, for i.i.d. circular Gaussian (Rayleigh)
channel matrices, the gap between our relaxation–randomiza-
tion approximate solutions and the relaxation/duality bound
might not be insignificant. We have also seen cases wherein
the gap is very small, cf., the far-field uniform linear transmit
antenna array example, and a good proportion of the VDSL
channels tested earlier.

It is evident that the gap statistics depend on the channel sta-
tistics. Interestingly, the gap statistics are far more favorable for
real (as opposed to complex circular) i.i.d. Gaussian channels.
This is illustrated in Fig. 4, using the QoS algorithm in Table I
for , , , , and 300 real i.i.d.
Gaussian channels. All three randomizations (randA, randB,
randC) are employed in parallel, for 30 randomization
samples each. For each channel, we recorded the percent gap
(100 times the gap over the relaxation bound) of the algorithm
in Table I. Observe that for about 95% of the channels the per-
cent gap is down to numerical accuracy in this case. Contrast
this situation with Fig. 5, which shows the respective results for
complex circular Gaussian channel matrices—the difference is
remarkable.

There are other cases where we have observed that the relax-
ation approach operates close to zero gap. One somewhat con-
trived case is when the real and imaginary parts of the channel
coefficients are nonnegative. This is illustrated in Fig. 6, where it
is worth noting that the scaling of the axis is . In this case,
the gap hovers around numerical accuracy, without exhibiting
any bad runs at all for the 300 channel matrices considered.
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Fig. 5. Percent gap outcomes for 300 complex circular Gaussian (Rayleigh)
channel realizations.

Fig. 6. Percent gap outcomes for 300 channel realizations with positive real
and imaginary parts (uniformly distributed between 0 and 1). Note that the
scaling of the y axis is 10 .

In conclusion, the complex circular Gaussian channel case
appears to be the least favorable of the scenarios considered.

IX. CONCLUSION

We have taken a new look at the broadcasting/multicasting
problem when channel state information is available at the
transmitter. We have proposed two pertinent problem formula-
tions: minimizing transmitted power under multiple minimum
received power constraints, and maximizing the minimum
received power subject to a bound on the transmitted power. We
have shown that both formulations are NP-hard optimization
problems; however, their solution can often be well approxi-
mated using semidefinite relaxation tools. We have explored
the relationship between the two formulations and also insights

afforded by Lagrangian duality theory. In view of i) our ex-
tensive numerical experiments with simulated and measured
data, verifying that semidefinite relaxation consistently yields
good performance, ii) proof that the basic problem is NP-hard,
and thus approximation is unavoidable, and iii) corroborating
motivation provided by duality theory, we conclude that the
approximate solutions provided herein offer useful designs
across a broad range of applications.

It would be useful to analyze the duality gap for the problem
at hand, for this would yield a priori bounds on the degree of
suboptimality introduced by relaxation, as opposed to the a pos-
teriori bound that we now have by virtue of Theorem 1. Our nu-
merical results indicate that the degree of suboptimality is often
acceptable in our intended applications. In an effort to under-
stand the apparent success of the SDR approach (e.g., in the
case where the channel vectors have nonnegative real and imag-
inary parts), one can consider the following simple linearly con-
strained convex quadratic program (QP) restriction of the QoS
problem:

subject to: for all

Notice that the feasible region of this problem is a subset of that
of the original nonconvex (and NP-hard) QoS formulation .
Thus, , where and denote the minimum beam-
forming power obtained from optimal solutions of and ,
respectively. We have recently shown [16] that the gap between

and is never more than , where is the max-
imum phase spread across the different users measured at each
transmit antenna and is assumed to be less than . Notice that
the two cases where channel vectors i) are real and nonnegative
or ii) have nonnegative real and imaginary parts correspond to

and . Thus, provides an exact solution in
the first case and a factor of 2 approximation in the second case.
These results indicate that problem is well approximated by

if the phase spread is small.
There are many other interesting extensions to the algo-

rithms developed herein: e.g., robustness issues, and multiple
cochannel multicasting groups. These are subjects of ongoing
work and will be reported elsewhere. Furthermore, aside
from transmit beamforming/precoding, there are also more
traditional signal processing applications of the proposed
methodology. One is linear filter design, in particular, the de-
sign of a linear “batch” filter that responds to certain prescribed
frequencies in its input and attenuates all other frequencies. In
this setting, the vectors will be Vandermonde, with genera-
tors and . One may easily envision scenarios
wherein such a problem formulation can be appropriate:
radio-astronomy applications, frequency-diversity combining,
and frequency-hopping communications. The context can
be further generalized: design a linear filter that responds to
prescribed but otherwise arbitrary signals in its input, while
attenuating all else.
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APPENDIX I
PROOF OF CLAIM 1

Before dealing with Claim 1 directly, we first consider the
following restriction of the QoS problem : the case when all

are real, and optimization is over . We will show that10

subject to:

contains

subject to:

as a special case and that problem is at least as hard as the
following problem:

Partition Problem : Given integers , do
there exist binary variables , such that

?
This is known to be NP-complete [4].
It is easy to check that the optimal value of problem is equal

to if and only if the answer to problem is affirmative. Thus,
solving problem is at least as hard as solving problem .

To show that problem contains problem (i.e., an arbi-
trary instance of problem can be posed as a special instance
of problem ), note that can be written as ,
where and contains one in the th posi-
tion and zeros elsewhere. Furthermore

where , and . The matrix
is positive definite. Let , and . Then

, , and can be written
as , or, with , as

. This shows that an arbitrary instance of problem can be
transformed to a special instance of problem (with ).
Thus, is at least as hard as , which is at least as hard as the
partition problem.

Proof of Claim 1: The QoS Problem is NP-hard: Con-
sider the problem

subject to: (1)

Define the matrix , and the
vector , with . Consider the case that ,

10We henceforth use h to denote possibly scaled channel vectors, dropping
the tilde for brevity.

and is full row-rank . Then , where
denotes the right pseudoinverse of , and the

problem in (1) is equivalent to

subject to: (2)

where , a positive semidefinite matrix of
rank ; and denotes the th element of the vector .
We will show that problem (2) is NP-hard in general. To this
end, we consider a reduction from the NP-complete partition
problem [4]; i.e., given , decide
whether or not a subset, say , of exists, such that

(3)

Let and let the complex-valued decision vector be

Let us denote

where denotes the length- vector of ones, and is the
length- vector of zeros.

Next we show that a partition satisfying (3) exists if and
only if the optimization problem (2) has a minimum value of

. In other words, the existence of is equivalent to the fact
that there is such that and , for
all . Since

it follows that

for all

is equivalent to

for all

The latter gives rise to a set of linear equations

(4)

(5)
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The ’s are all constrained to be on the unit circle; thus let
for . Using (4), we have

(6)

(7)

where . These two equations imply that
for all . This, in particular, means that

for , implying that

Therefore, (5) is satisfied if and only if

with for all , and thus
, which is equivalent to the existence

of a partition of such that (3) holds. In fact, we
can imply take .
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A Hybrid Probabilistic Data
Association-Sphere Decoding Detector for
Multiple-Input–Multiple-Output Systems

Georgios Latsoudas and Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract—A hybrid probabilistic data association (PDA)-sphere
decoding (SD) algorithm is proposed for signal detection in mul-
tiple-input–multiple-output (MIMO) systems. The key idea is to re-
duce the dimension of the problem solved via SD by first running a
single stage of the PDA to fix symbols that can be decoded with high
reliability. Simulations under a multiple antenna Rayleigh fading
scenario show that this two-step algorithm attains a considerably
better performance-complexity tradeoff than SD and PDA for low
to moderate signal-to-noise ratio (SNR) or higher problem dimen-
sions.

Index Terms—Integer least squares, multiple-input–mul-
tiple-output (MIMO) decoding, probabilistic data association
(PDA), sphere decoder.

I. INTRODUCTION

MULTIPLE antenna systems have attracted great interest
in recent years, due to the capacity improvement that

they afford. Vertical Bell Laboratories Layered Space Time
(V-BLAST) [3] is a widely known multiple antenna spatial
multiplexing system targeting high spectral efficiencies. Un-
fortunately, the associated maximum-likelihood (ML) detector
amounts to a constrained integer least-squares problem, whose
exact solution entails exhaustive search. Thus, following the
so-called nulling and cancelling detector [3], several computa-
tionally efficient detection algorithms have been developed for
or adapted to V-BLAST.

Sphere Decoding (SD) [11], Probabilistic Data Association
(PDA) [8], [10], and Semi-Definite Relaxation (SDR) [9]
are three multiple-input–multiple-output (MIMO) detectors
that can provide near-optimal performance at relatively low
complexity in certain scenarios. Among them, SD appears to
be prevalent in the recent literature. Numerous variants and
improvements of SD have recently been developed, e.g., [1],
[2], [12], and [13], incorporating more sophisticated schemes
for increasing the associated search radius and organizing the
computations in a more efficient manner, e.g., the Schnorr–Eu-
chner (SE) SD, which uses an improved search strategy [1],
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[2]. A drawback of the SD family of detectors is that, for
close-to-ML performance, complexity remains high in the low
signal-to-noise ratio (SNR) regime or when the number of
symbols to be jointly detected is large [5], [6].

The PDA is a simpler detection method, which, however, gen-
erally provides worse performance than SD. SD, PDA, SDR,
and several other algorithms have recently been compared in
the context of code division multiple access (CDMA) multiuser
detection [4]. A corresponding comparison for the multiple an-
tenna Rayleigh fading scenario (as in V-BLAST) has not been
undertaken, to the best of our knowledge. Thorough compar-
isons are nontrivial, because complexity and performance of SD
and SDR depend on a number of parameters. Our experience in
[7] indicates that SDR is inferior to SD at high SNR.

In this letter, we propose a hybrid PDA-SD algorithm that at-
tains a better performance-complexity tradeoff than either of its
constituent components. At each stage of the decoding process,
the PDA produces a set of soft decision metrics that can be used
to assess how reliable associated hard decisions would be at
that point. The basic idea, then, is to execute a single stage of
the PDA algorithm and fix those symbols that can be detected
with high reliability. After cancelling the effect of those sym-
bols, a reduced-dimensionality problem is passed to SD for de-
coding. This reduces the complexity of SD and improves the
performance of PDA. Our simulations show that the proposed
algorithm enjoys an error performance close to that of SD over
a wide range of SNR, at a significantly reduced computational
cost.

We use the SD algorithm in Viterbo–Boutros (VB-SD) [11],
with an initial radius chosen according to [5], and the SE-SD in
[1] and [2], with a search radius set to infinity. Note, however,
that the initial PDA stage can also be combined with other vari-
ants of SD or SDR. The key here is that dimensionality reduc-
tion via single-stage PDA preprocessing can provide significant
computational relief at a small performance cost.

II. SYSTEM MODEL

The aforementioned techniques are applicable to a broad
range of MIMO communication systems. Herein, we focus on
V-BLAST for concreteness. V-BLAST is a symbol synchro-
nized multiple antenna system with transmit and receive
antennas, with . The input stream of bits is mapped
to a particular constellation, and the resulting symbol stream
is demultiplexed into substreams. The transmissions are
organized into bursts of symbol periods. It is assumed that

1070-9908/$20.00 © 2005 IEEE
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the channel is frequency flat and block fading (i.e., its variation
is negligible over the symbol periods comprising a burst and
random from one burst to the next). The channel is assumed to
be known to the receiver but not to the transmitter. From the
discrete-time baseband-equivalent viewpoint, the system can
be represented as

(1)

where are the re-
ceive and the transmit vector, respectively, is a generally com-
plex channel matrix with entries , and is a white
Gaussian circularly symmetric noise vector with covari-
ance matrix . The normalized amplitude ensures
that the SNR is constant for a given noise variance, irrespective
of . Assuming rich scattering, the elements of are mod-
eled as independent and identically distributed (i.i.d.) circularly
symmetric Gaussian variables with zero mean and unit variance
of the real and imaginary parts. For simplicity, we assume that
the transmitted symbols are taken from a 4-QAM constellation,
but the ideas generalize to higher order constellations. In order
to transform the above model to a real-valued one, define

(2)

(3)

(4)

(5)

where denote the real and the imaginary part, respectively.
Using the above vectors and matrices, we obtain the real-valued
vector equation

(6)

III. HYBRID ALGORITHM

The hybrid algorithm consists of the following steps. As in
[10], we premultiply (6) with , which yields

(7)

where is a symmetric positive definite1 matrix, and
is a noise vector with covariance matrix . We

then apply one stage of the PDA detector (steps 1–5 in [8]) to
the system in (7) and, thus, obtain a vector that contains the
associated probabilities for the elements of . Let denote the
subset of bits that satisfy

(8)

with to be suitably chosen. will henceforth denote the com-
plement of . We then make hard decisions for the bits in ,

1With probability 1, under the i.i.d. Rayleigh assumption.

that is, set sign and collect these de-
cisions in a vector . Now, expand (6) as

with obvious notation. Assuming perfect decisions for the bits in
(that is, ), the residual subsystem after cancellation

is

After compacting

the noise vector is colored Gaussian with zero mean and co-
variance matrix . Introduce the Cholesky factorization

(9)

and premultiply the system with to obtain

(10)

where the noise vector is white Gaussian with covariance
matrix . We now apply SD to (10). Let be the number of
elements in . As suggested in [5], the initial radius for VB-SD
is set to , with such that

(11)

Alternatively, SE-SD can be used in the second stage of the hy-
brid algorithm. We try both VB-SD and SE-SD in our simula-
tions.

Threshold Parameter

The threshold parameter should be small enough to ensure
that the PDA stage makes reliable decisions. On the other hand,

should not be too small, for otherwise, the inclusion of the
PDA stage will yield little if any dimensionality reduction ben-
efit.

While it is clear that should be made smaller with increasing
SNR, choosing it based on analytical considerations appears in-
tractable. Our experience is that the following choice is rea-
sonable: [hard-limited within ], with

. This setting is well supported by our sim-
ulation results, which are reported next.

IV. SIMULATION RESULTS

In our simulations, each burst comprises symbol
intervals. Over each symbol interval, 4-QAM symbols

are simultaneously transmitted. For
each burst, a new realization of the Rayleigh channel matrix is
generated. For the bit-error rate (BER) plots, we use a dynamic
Monte Carlo simulation: For each SNR, the simulation stops
when both the number of errors has reached 150, and the
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Fig. 1. Probability of error comparison for 4-QAM with n = n = 16.
Dynamic Monte Carlo simulation.

Fig. 2. Computational cost versus SNR,n = n = 16, 4-QAM, 10 Monte
Carlo runs.

number of bursts has reached five. This ensures sufficient aver-
aging in the low error rate regime while reducing unnecessarily
long runs in the high error rate regime. For the computational
complexity plots, we use (100 bursts of 100 symbol vectors
each) Monte Carlo runs per datum reported.

The implementation of PDA does not incorporate the bit-flip
stage [8]. The internal threshold parameter of PDA is set to

SNR as in [8] (note that this is different from our
hard decoding threshold ). The initial radius of SD is set as in
Section III; if SD fails to find a point inside the sphere, the ra-
dius is increased by one, up to five times (six searches at most).
For the SE-SD algorithm, we set the search radius to infinity,
which ensures that the ML solution will be found.

Fig. 1 shows the BER performance of PDA, SD,
and the hybrid PDA-SD algorithm as a function of
SNR , for . Fig. 2
shows the associated average and worst-case computational

Fig. 3. Computational cost versus n ; n = n , 4-QAM, SNR = 10 dB,
10 Monte Carlo runs.

costs per symbol vector, measured in Floating Point Opera-
tions (FLOPS). Finally, Fig. 3 shows FLOPS versus , with

, for SNR dB.

V. CONCLUSION

We have presented a two-stage hybrid PDA-SD algorithm for
signal detection in MIMO systems. The basic idea is dimension-
ality reduction via hard decoding and cancellation of those sym-
bols that can be quickly and reliably detected via a single PDA
stage. In the V-BLAST scenario considered, simulations show
that the proposed hybrid algorithm attains performance close to
SD, at a complexity close to PDA. The dimensionality reduc-
tion idea can also be applied in conjunction with other variants
of SD or SDR.
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On Downlink Beamforming With Greedy
User Selection: Performance Analysis

and a Simple New Algorithm
Goran Dimić, Member, IEEE, and Nicholas D. Sidiropoulos, Senior Member, IEEE

Abstract—This paper considers the problem of simultaneous
multiuser downlink beamforming. The idea is to employ a transmit
antenna array to create multiple “beams” directed toward the
individual users, and the aim is to increase throughput, measured
by sum capacity. In particular, we are interested in the practically
important case of more users than transmit antennas, which
requires user selection. Optimal solutions to this problem can
be prohibitively complex for online implementation at the base
station and entail so-called Dirty Paper (DP) precoding for known
interference. Suboptimal solutions capitalize on multiuser (selec-
tion) diversity to achieve a significant fraction of sum capacity at
lower complexity cost. We analyze the throughput performance
in Rayleigh fading of a suboptimal greedy DP-based scheme
proposed by Tu and Blum. We also propose another user-se-
lection method of the same computational complexity based on
simple zero-forcing beamforming. Our results indicate that the
proposed method attains a significant fraction of sum capacity
and throughput of Tu and Blum’s scheme and, thus, offers an
attractive alternative to DP-based schemes.

Index Terms—Beamforming, downlink, multiuser diversity.

I. INTRODUCTION

T RANSMIT antenna arrays can be utilized in two basic
ways or a combination thereof: space-time coding and spa-

tial multiplexing. The former can be used without Channel State
Information (CSI) at the transmitter and allows mitigation of
fading and exploitation of transmit-receive diversity. However,
if CSI is known at the transmitter, higher throughput can be at-
tained using spatial multiplexing, which can be implemented
as multibeam transmit beamforming. Until recently, transmit
beamforming was mostly considered for voice services in the
context of the cellular downlink. With the emergence of third-
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and fourth-generation (3G and 4G) systems, higher emphasis is
being placed on packet data, which are more delay-tolerant but
require much higher throughput. Hence, we have the recent in-
terest in transmit beamforming strategies for the cellular down-
link that aim to attain the sum capacity of the wireless channel
[1], [11], [13]–[16], [18], [19].

The scenario of interest can be modeled as a nondegraded
Gaussian broadcast channel (GBC). Let be the number of
antennas at the transmitter [Base Station (BS) in a cellular
context], and consider a cluster of mobile users, each
equipped with a single receive antenna. The channel between
each transmit and receive antenna is constant over a certain
time interval and is known at the BS. The received signal is
corrupted by Additive White Gaussian Noise (AWGN) that is
independent across users. The BS may transmit simultaneously,
using multiple transmit beams, to more than one user in the
cluster.

Since the receivers cannot cooperate, successful transmission
critically depends on the transmitter’s ability to simultaneously
send independent signals with as small interference between
them as possible. Caire and Shamai [1] proposed a multiplexing
technique based on coding for known interference, known as
“Writing on Dirty Paper,” Costa precoding [2], or dirty paper
(DP) coding. In [2], it is proven that in an AWGN channel with
additional additive Gaussian interference, which is known at the
transmitter in advance (noncausally), it is possible to achieve the
same capacity as if there were no interference. Assuming Costa
precoding and known channels at the transmitter, Vishwanath
et al. [14] and Yu and Cioffi [19] have proposed algorithms that
evaluate sum capacity of the GBC along with the associated op-
timal signal covariance matrix. However, both approaches re-
quire convex optimization in (order of) variables to find
the optimal signal covariance matrix. Jindal et al. [7] have re-
cently proposed a more efficient iterative algorithm, which re-
quires operations per iteration.

The complexity of the aforementioned optimal strategies
can be problematic for online implementation, especially when

is large. A reduced-complexity suboptimal solution to sum
rate maximization is proposed in [1]. It suggests the use of QR
decomposition of the channel matrix combined with DP coding
at the transmitter. The combined approach nulls interference
between data streams, and hence, it is named zero-forcing
dirty-paper (ZF-DP) precoding. If , ZF-DP is proven to
be asymptotically optimal at both low and high SNR but subop-
timal in general, whereas ZF beamforming without DP coding
is optimal in the low SNR regime and yields the same slope of

1053-587X/$20.00 © 2005 IEEE
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throughput versus SNR in decibels as the sum capacity curve
at high SNR. For the case of , Spencer and Haardt
[11] considered ZF beamforming without DP coding, and
Samardzija and Mandayam [10] compared ZF beamforming
with QR-decomposition-based spatial prefiltering coupled with
DP coding.

If , [1] has shown that random selection of
users incurs significant throughput loss for both ZF-DP and
ZF schemes. Tu and Blum [13] have proposed an algorithm
based on ZF-DP, with a greedy user-selection procedure, named
greedy ZF-DP (gZF-DP). In [13], it is shown by simulations that
the throughput of gZF-DP is a significant fraction of the sum ca-
pacity. This is achieved by means of multiuser diversity. For the
case of , Viswanathan et al. [16] considered the problem
of achieving any point in the capacity region and not only max-
imum sum capacity. They proposed ZF beamforming coupled
with a user-selection scheme that schedules users using an
exhaustive search over a set of users with the highest indi-
vidual SINR . The throughput of this scheme
was compared to the throughput of a DP-coding-based optimal
algorithm, and it was reported that as approaches , the
throughput of ZF with exhaustive user selection comes close to
the throughput of the optimal algorithm when each receiver has
one antenna [16].

An important shortcoming of DP coding is that it requires
vector coding, and depending on the SNR, it may require long
temporal block lengths to be well approximated in practice. In
particular, the required block length decreases as SNR increases,
with a block length of one being adequate at sufficiently high
SNR. At low and moderate SNR, a good approximation of DP
can be computationally demanding with the current state-of-art
[8], [18], [20]. For this reason, we advocate herein a more prag-
matic approach, based on plain ZF beamforming.

Our goal is to investigate low-complexity downlink beam-
forming solutions that come close to attaining sum capacity for
the practically important case wherein the number of down-
link users is larger than the number of transmit antennas

, which entails user selection. Our aim is three-fold: i) An-
alyze gZF-DP to better understand the effects of multiuser di-
versity; ii) propose a simpler greedy alternative, based on ZF
beamforming and dubbed ZFS, which does not use DP coding;
and iii) assess the performance of both gZF-DP and ZFS rela-
tive to sum capacity. The key idea is that multiuser diversity can
largely make up for the use of simple linear processing in lieu of
more complex schemes. The performance analysis of gZF-DP
is useful in system design, and ZFS is appealing from a prac-
tical standpoint. In particular, we will show that the complexity
of the selection procedure of the proposed algorithm is the same
as that of gZF-DP. Our simulation results indicate that at mod-
erate and high SNR, ZFS has equal slope of throughput versus
SNR as the gZF-DP and the capacity curve. It achieves a sig-
nificant fraction of throughput of the gZF-DP algorithm and re-
mains close to sum capacity for all SNR for a small to moderate
number of transmit antennas.

We note that an inherent drawback of the maximum sum ca-
pacity criterion is the lack of fairness guarantees, at least in the
short run. While this could be compensated over a longer time-

line due to channel variations, it remains that certain users may
be completely shut off during a scheduling epoch. Whether this
is appropriate or not depends on the context; on this issue, see
also [1], [11], [13]–[16], [18], and [19].

The rest of the paper is organized as follows. The problem
of sum rate maximization is formulated in Section II. This is
followed by a review of the gZF-DP algorithm, a description
of the proposed ZFS algorithm, and a comparison of the com-
plexities of the two algorithms in Section III. In Section IV, the
throughput performance of the gZF-DP algorithm in indepen-
dent Rayleigh fading is analyzed. Simulation-based comparison
of the throughput performances of gZF-DP and ZFS is provided
in Section V. Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Let model the quasistatic, flat-fading channel between
transmit antenna and the receive antenna of user , and de-
note . Note that is a row
vector. Thus, the channel matrix is

(1)

where denotes conjugate-transpose. rank
with probability 1, due to the assumed statis-

tical independence and continuous distribution of the channel
vectors. Throughout the paper, we are interested in the case

so that we assume that . Collecting the
baseband-equivalent outputs, the received signal vector is

(2)

where is the transmitted signal vector, and is the noise
vector. The signal covariance matrix is . The
total transmit power is constrained to . The sum capacity of
such a vector Gaussian broadcast channel is [15]

(3)

where is the set of by non-negative diagonal matrices
with Trace .

Using only linear spatial processing at the transmitter, which
is a suboptimal strategy, we obtain the following model. Let

( denotes transpose) be
the beamforming weight vector for user . The beamforming
weight matrix is

(4)

Collecting the baseband-equivalent outputs, the received signal
vector is

(5)

where is the transmitted signal vector containing uncorrelated
unit-power entries, and

...
...

. . .
...

(6)

accounts for power loading (the columns of are thus normal-
ized to unit norm). Note that the elements of are physically
distributed across the mobile terminals. Multiuser decoding
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is therefore not feasible; hence, each user treats the signals in-
tended for other users as interference. Noise is assumed to be
circular complex Gaussian, zero-mean, and uncorrelated with
variance of each complex entry .

The desired signal power received by user is given by
. The Signal-to-Interference plus Noise Ratio

(SINR) of user is

SINR (7)

The linear beamforming problem can now be formulated as

SINR

subject to
(8)

where denotes Frobenius norm, and stands for a bound
on average transmitted power.

Attaining capacity requires Gaussian signaling and long
codes, yet the logarithmic SINR reward can be motivated from
other, more practical perspectives as well. It can be shown that
it measures the throughput of QAM-modulated systems over
both AWGN and Rayleigh fading channels. The intuition is that
SINR improvements eventually yield diminishing throughput
returns.

III. REDUCED-COMPLEXITY ALGORITHMS

A. Greedy Zero-Forcing Dirty-Paper Algorithm

In [1], Caire and Shamai have proposed a suboptimal solution
to (3) based on the QR-type decomposition [6] of the channel
matrix obtained by applying Gram–Schmidt orthogo-
nalization to the rows of . is a lower triangular matrix, and

has orthonormal rows. Setting , (5) yields a set of
interference channels

(9)
while no information is sent to users .
In order to eliminate the interference term

, the input signals , for
are obtained by successive application of DP

coding, where for each , the interference is noncausally
known. This particular choice of precoding matrix
nulls interference caused by users and DP coding nulls
interference caused by users so that the scheme forces
all interference to zero. Hence, it was dubbed ZF-DP coding.
The throughput of the ZF-DP scheme is given by [1]

(10)

where , , and is the solution
of the water-filling equation

(11)

Then, for

(12)

Note that when , one has to select up to out of
users whose data will be transmitted. In general, different

selections yield different values of in (10). Furthermore,
different ordering within the same set of users yields different
sum rate. The ZF-DP scheme does not attempt to optimize the
throughput with respect to either user selection or ordering. In
[13], Tu and Blum have proposed a greedy algorithm for the
selection of out of rows of the channel matrix and or-
dering of the selected rows in the Gram-Schmidt orthogonal-
ization, aiming to maximize the throughput. The algorithm is
called greedy ZF-DP and is presented here for convenience.

Let denote the set of indices of all
users, and let denote the set of

selected users .

1) Initialization:
Set .
Let . Find a user such that

.
Set .

2) While :
Increase by 1.
Project each remaining channel vector

onto the orthogonal complement of the sub-
space spanned by the channels of the se-
lected users. The projector matrix is

(13)
where is the identity matrix, and

denotes the row-reduced channel
matrix consisting of the channel vectors
of the users selected in the first
steps

(14)

Let . Due to idempotence of
, we have

(15)

Find a user such that

(16)

Set .
3) Beamforming: Let , where

is the QR-type decomposition of .
4) DP coding: Applied to the rows of .
Power Loading: Water-filling.

The rows of in the QR decomposition of
are obtained by applying Gram–Schmidt orthog-

onalization to the ordered rows of : . This
yields [1]

(17)
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From , we obtain . By
definition of (10), orthonormality of , and (17), we
have

From (15) and (16), it follows that

(18)

for . In other words, the gZF-DP algorithm maxi-
mizes , conditioned on the choice of .

B. ZF With User Selection

ZF beamforming inverts the channel matrix at the transmitter
so that orthogonal channels between transmitter and receivers
are created. It is then possible to encode users individually, as
opposed to the more complex long-block-vector coding gener-
ally needed to implement DP. Note that ZF at the transmitter
does not enhance noise at the receiver, but it incurs an excess
transmission power penalty relative to ZF-DP. If , and

, then the ZF beamforming matrix is

(19)

which is the Moore-Penrose pseudoinverse of the channel ma-
trix. However, if , it is not possible to use (19) because

is singular. In that case, one needs to select out of
users.

For , the problem (8) is reformulated as follows:
Given , select and a set of channels

, which produce the row-reduced channel ma-
trix

such that the sum rate is the highest achievable:

subject to (20)

The throughput of ZF algorithm is given by [1]

(21)

where

(22)

and is obtained by solving the water-filling equation in (20).
The power-loading then yields

(23)

The problem can be conceptually solved by exhaustive search:
For each value of , find all possible -tuples and select a
pair , which yields maximum . However, such
an algorithm has prohibitive complexity.

We propose a reduced-complexity suboptimal algorithm,
dubbed ZF with Selection (ZFS), as outlined next.

1) Initialization:
Set .
Find a user, , such that

Set and denote the achieved
rate .
2) While :

Increase by 1.
Find a user, , such that

Set , and denote the
achieved rate .

If break, and de-
crease by 1
3) Beamforming:
Power Loading: Water-filling.

C. Complexity and Implementation

We consider complexity of the user selection procedure only.
The complexity of DP coding, required by the gZF-DP algo-
rithm, depends on its implementation, in particular, the degree of
approximation and the associated spatio-temporal block length
(which is a function of SNR), cf. [4], [18].

Complexity of the user selection procedure of the gZF-DP
algorithm is . To see this, note that for each ,
the algorithm evaluates -norms . Evaluation of

involves a vector-matrix multiplication, where the vector
is and the matrix . The complexity of this step is

. Repeating this over users in steps, we obtain
.

We will show that the complexity of the user selection proce-
dure of the ZFS algorithm is also . Again, for each

, the ZFS algorithm evaluates rates
. The evaluation of is split into the eval-

uation of the ’s followed by evaluation of ;
cf. (21). An efficient way to evaluate the ’s
is by using the matrix inversion lemma to invert the matrix

. Note
that

where , and
. Noting that and writing

(24)

after some algebraic manipulation, we obtain

(25)

where . It can be verified that
each time is increased, and , are
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known before the search over starts. Hence, eval-
uation of from (24) and (25) has complexity
proportional to . Repeating this over users in each
of steps, we obtain the overall complexity of the user-se-
lection procedure of the ZFS algorithm to be .

It can be shown that the per-iteration complexity of the sum
power iterative water-filling algorithm proposed by Jindal et al.
[7] is . Therefore, the gZF-DP and ZFS algorithms
have significantly lower computational complexity than the sum
power iterative water-filling algorithm if .

In the following, we pay attention to the substeps in step 2)
of the ZFS algorithm. Given a set , we have [1]

(26)

where denotes the projector onto the orthogonal com-
plement of span . Note that

for every user . This is due to (26)
and . Therefore, if (20) and (23) yield

, then . We discard
such . We also discard if (20) and (23) yield for
some . This is done to keep complexity at bay for oth-
erwise, combinatorial search might effectively emerge. Hence,
user is a candidate for if , . From
the properties of water-filling, this holds if

(27)

where .
Then, we have

(28)

If (27) is not satisfied, we skip to the next .
We note that the break in Step 2 is necessary when ZFS is

used but redundant when ZF-DP is used; it is shown in [1] and
[13] that in the latter case, maximum sum rate can always be
achieved with active users if [1]. On the other hand,
when ZF alone is used, the optimum number of active users is

and decreases as decreases, so that for ,
the ZF scheme reduces to maximum ratio combining (MRC)

[1]. This also holds for the proposed ZFS algorithm,
which follows from the water-filling equation in (20) and the
fact that .

IV. PERFORMANCE ANALYSIS IN INDEPENDENT

RAYLEIGH FADING

In this section, we evaluate the throughput of the greedy
ZF-DP algorithm [13] in independent Rayleigh fading when
channels remain constant over the duration of a transmission of
a block of symbols. The channels of all users are assumed to
have i.i.d. entries, which are circularly symmetric, zero-mean,
complex Gaussian random variables (r.v.s) with unit variance

. In [1], the average throughput of the ZF-DP
and ZF schemes in independent Rayleigh fading under a
long-term power constraint for general and is evaluated.

As noted earlier, the simple ZF-DP and ZF algorithms in [1]
do not attempt to optimize throughput with respect to user se-
lection and ordering when . Instead, users are selected
and ordered randomly.

A. gZF-DP Sum Rate Under Long-Term Power Constraint

We model the greedy ZF-DP algorithm [13] under a long-
term power constraint. We are interested in evaluating

- (29)

where is the solution of the water-filling equation, stemming
from the long-term (LT) power constraint

(30)

Note that the optimum determined by (30) will be a deter-
ministic function of the statistics of the ’s and not a function
of the random variables themselves. By this and linearity of ex-
pectation, we can rewrite (29) as

-

Therefore

- (31)

where denotes the probability density function (pdf) of
. Similarly, (30) becomes

(32)

In order to evaluate , we need to evaluate the pdfs of ’s
based on the knowledge of channel statistics and selection pro-
cedure. Our derivation below draws in part from performance
analysis tools in [5], [17], which we tailor to fit the context of
gZF-DP. In particular, our analysis accounts for and exploits the
specific selection procedure employed in gZF-DP.

B. Probability Density Functions

It is instructive to consider the modeling of the pdf of first,
followed by modeling the pdf of , and then generalizing to
compute the pdf of for general . First, let us determine
the distribution of . Note that is a sum of
squared magnitudes of circularly symmetric, zero-mean, unit-
variance complex Gaussian random variables. Therefore, it has
Chi-squared distribution with degrees of freedom

, whose pdf is

(33)
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denotes the Gamma function, and for
a positive integer . According to the selection algorithm

(34)

From order statistics, e.g., [3, (2.1.1)], we obtain the pdf of
as

(35)

where is the cumulative distribution function (cdf) of
. We say that the distribution of is the parent distribu-

tion of the order statistics , where
is the th largest for .

Noting that , for all of the remaining users
, it follows that the posterior distribution of of the

remaining users (after selecting user ) depends on the real-
ization of . In the sequel, we will need to use the conditional
pdf of of the remaining users given a realization of . Ac-
cording to (34) and, e.g., [3, Th. 2.7], the parent distribution of
the order statistics of the remaining users is equal
to truncated on the right at the value of

if
otherwise.

(36)

After setting , the selection algorithm proceeds by pro-
jecting the channel vectors of all of the remaining users onto the
orthogonal complement of the subspace spanned by the channel
vector of user . From (15), we have , for

, where is given in (13). The distribution of
given , which is denoted , then becomes

the parent distribution of the order statistics , given for
. Therefore, we need a mapping from to

that models the projection step

(37)

Here, denotes the pdf of , given realiza-
tions of and . Note that . is statisti-
cally independent of , for , so that from the point of
view of the users in , appears to be a randomly selected
projector matrix. However, the first user has been selected after
considering the channels of all users, and thus, there might be
mild dependence between the channels of the remaining users
in and . For analytical tractability, we will ignore
this dependence. Our simulation results will fully corroborate
this approximation: The difference is not even noticeable in
simulations.

Assumption 1: We therefore assume that conveys no in-
formation about , i.e., has the Markovian
property

(38)

The pdf is obtained from the following.
Claim 1: Let and de-

note independent -dimensional random (row-) vectors with

Fig. 1. cdf F (xjy) when y : 1�N channel vector.

i.i.d., circularly symmetric, zero-mean, complex Gaussian en-
tries with unit variance and . Let

and , where
[cf. (13)] is an projector matrix with eigenvalues
equal to 1 and one eigenvalue equal to 0. Then, the cdf of ,
given , is given by

for

elsewhere.
(39)

Remark 1: The rigorous proof of this claim turned out to be
elusive, but it is very well supported by simulations. Fig. 1 de-
picts versus for 2, 3, and 4. Lines show
empirical cdfs obtained by Monte Carlo (MC) simulations, and
markers show samples of analytic curves given by (39). In MC
simulations, for each value of , there were 2 random
realizations of given , for realizations of . The empir-
ical is discrete. Its support is divided
into 200 intervals of length 1/200. The match in Fig. 1 is very
accurate.

From (39), we obtain

for ,
otherwise.

(40)

From (18), it follows that , conditioned on a realization of
, is the maximum of r.v.s with the parent distribution

given by the pdf from (37). Using order statistics,
we obtain [3]

(41)
Since for , it follows that .
Finally

(42)

for .
Armed with these insights, we can now generalize to the com-

putation of the pdf of for . The associated derivation
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is deferred to the Appendix. Using the results of Section IV-A,
the pdf of is obtained as a marginal distribution:

(43)

for .
The pdfs of for can be written in a more

compact form, facilitating analysis and numerical integration.
Proposition 1: Define

(44)

and

(45)

Then, we have (46), shown at the bottom of the page. The proof
is given in the Appendix. We will use the forms in the above
proposition in the Proof of Theorem 1, whose statement appears
in Section IV-C.

Fig. 2 depicts an example of pdfs of for and
. Full lines depict analytically obtained pdfs. Markers

show samples of the empirically obtained pdfs through Monte
Carlo (MC) simulations. There are MC samples. For every

, the support of the empirical pdf is truncated where the tail
becomes insignificant. Then, the empirical pdf is discretized by
dividing the truncated support into 100 equal intervals. These
results justify the approximation (Assumption 1) made in the
course of an analytical derivation for tractability considerations.

C. Throughput of gZF-DP at High SNR

Let - denote the average throughput of the gZF-DP
algorithm. Let denote the SNR, where the noise
variance of each user is assumed equal to 1. We have the fol-
lowing result.

Fig. 2. Family of pdfs of d for N = 4,M = 8.

Theorem 1: Let , and let be the power limit. Then,
under our working assumptions

-
bits
dB

(47)

The proof is given in the Appendix. The above theorem shows
that the throughput versus SNR slope of the gZF-DP algorithm
in the high SNR regime is proportional to the number of an-
tennas at the transmitter . Note that this is the theoretical
limit of the capacity versus SNR slope for a multiple-input mul-
tiple-output (MIMO) system with transmit and re-
ceive antennas [9].

V. COMPARISON OF GREEDY ZF-DP AND ZFS

The throughputs of the gZF-DP and ZFS algorithms are pre-
sented in Figs. 3 and 4. The -axis shows sum capacity and
sum rate in bits per channel use. The -axis shows total power

in decibels. The noise level of every user is 1. The sum ca-
pacity and sum rates are averaged over 100 channels. Channels
are complex-valued, drawn from an i.i.d. Rayleigh distribution
with unit-variance for each channel entry. The sum capacity is
obtained using the approach proposed in [14].

For the gZF-DP algorithm, analysis (obtained under a long-
term power constraint) yields throughput very close to that ob-
tained via simulations (under a short-term power constraint).
This can be explained as follows. Capitalizing on multiuser di-
versity, gZF-DP selects and orders channels (users) from a large
pool of statistically independent candidates. The result is that
the ensuing ’s are far more stable than they would have been

(46)
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Fig. 3. ZFS versus Greedy ZF-DP versus Sum capacity:M = 8 users, N =

2, and N = 4.

Fig. 4. ZFS versus Greedy ZF-DP versus Sum Capacity:M = 16 users,N =

2, and N = 4.

without user selection and ordering. This justifies the use of
a long-term power constraint for analysis, as opposed to the
short-term power constraint originally proposed in the algorithm
and used in simulations.

In these scenarios ( or 4 and or 16), both
gZF-DP and ZFS algorithms achieve throughput close to sum
capacity. Note that ZFS exhibits the same slope of rate increase
per decibel of SNR as the gZF-DP algorithm and the sum ca-
pacity curve at moderate and high SNR.

Fig. 5 shows the throughput of the ZFS algorithm as a frac-
tion of the throughput of the gZF-DP algorithm for various pairs

, at 20 dB SNR. The curves are obtained by simulations,
averaging over 2 channels for each pair , . For all ,

considered, this fraction stays between 0.875 and 0.985. For
a given , the gap between gZF-DP and ZFS increases as
increases, but even for , the gap is uniformly less than

Fig. 5. R =R - for various numbers of antennas,N , and users,M ,
at 20 dB SNR.

13% of the gZF-DP throughput. Note that a realistic implemen-
tation of DP coding will incur a certain rate loss for the gZF-DP
algorithm, so that the gap would be smaller in reality.

Given and for sufficiently large , Fig. 5 shows that the
gap between ZFS and gZF-DP decreases with . This is due to
multiuser diversity—the more users that contend for transmis-
sion, the higher the probability that of them will be almost
orthogonal. This in turn reduces the advantage of DP-coding-
based schemes over ZFS. Depending on , the fraction of sum
rate of ZFS over the sum rate of gZF-DP may first exhibit a
dip before starting to increase steadily with . While the dip is
small (less than 3%), it is noticeable, and we do not have an ex-
planation for it. We have observed that, as SNR increases, more
transmit antennas are required for this dip to occur.

VI. CONCLUSIONS

We have considered two algorithms that capitalize on mul-
tiuser diversity to achieve a significant fraction of the multi-
antenna downlink sum capacity when the number of users
is greater than the number of antennas . We have analyzed
the throughput performance of the greedy ZF-DP algorithm in
independent Rayleigh fading and characterized the pdfs of cer-
tain key parameters of interest. Determining the proper number
of samples required for accurate Monte Carlo estimates is a dif-
ficult issue without a baseline. While the end result of gZF-DP
performance analysis requires sequential numerical integration
and is admittedly cumbersome, it provides such a baseline and
thus corroborates the results of Monte Carlo estimation. In addi-
tion, numerical integration is simpler than Monte Carlo simula-
tion for a small number of transmit antennas. Furthermore, our
analysis allowed us to establish that at high SNR, the throughput
versus SNR slope of the gZF-DP algorithm is proportional to .

We have also proposed another low-complexity algorithm,
dubbed ZFS, which does not require DP coding at the trans-
mitter. We have shown that the selection procedures of gZF-DP
and ZFS algorithms have the same complexity order ,
which is significantly smaller than the complexity of the optimal
algorithms when . We have evaluated the throughput
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performance of the ZFS algorithm via simulations. The results
show that for a realistic number of transmit antennas, ZFS
achieves a significant fraction of the throughput of gZF-DP
and sum capacity at a low coding and online computation cost.
The simulation results also indicate that at high SNR, ZFS
achieves the same slope of throughput per decibel of SNR as
the capacity-achieving strategy based on the use of DP coding
for known interference cancellation and convex optimization.

Due to its simplicity, low complexity, and close to optimal
performance, the proposed ZFS method offers an attractive al-
ternative to earlier DP-based methods when .

APPENDIX A
DERIVATION OF THE PDF OF

Note that there are three basic steps in deriving :

1) Truncation of the parent pdf after selecting user :
Find the conditional pdf of of the remaining users

given realizations of .
From order statistics [3], we obtain (48), shown at the
bottom of the page.

2) Mapping of into
: Given realizations of

for , where , there are
quadratic-form equations

Let the eigenvalue decomposition of be

From (13), it follows that there are eigenvalues
equal to 1 and eigenvalues equal to zero. Then, we
can write

As per Assumption 1, we neglect the (mild) depen-
dence of the projector matrices on the ’s for

. This yields

(49)
Since the projection is a vector in an

-dimensional subspace, it follows from Claim 1 that

for
otherwise.

(50)

Then, the pdf of the parent distribution of of the
remaining users given is

(51)

where .
3) conditioned on is the maximum of

r.v.s with pdf given in (51). Using order statistics
[3], we obtain

(52)

APPENDIX B
PROOFS

Proof of Proposition 1: Let us first prove the following:

(53)

where is given in (45).
This is proven by induction. For , we have

From (33), (36), and (40), we obtain

From (45), it follows that

Induction hypothesis: (53).
Induction Step:

otherwise.
(48)



3866 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

From (48) and (50), we obtain

By the induction hypothesis, we have

From (45), it follows that

Applying (45) again, we have

Now, we use the above result to prove Proposition 1. For
, from (44), we obtain

For and substituting (52) into (43), we obtain the
equation shown at the bottom of the page. Applying (53), we

obtain the equation at the top of the next page. Dividing the left
fraction and rearranging the right one, we obtain

Therefore

Proof of Theorem:

- where

so that from (32), we have

Using the Leibnitz rule, from (31), we have

It follows that

-

In order to determine - , we will de-
termine . Note that is equivalent to

. In addition, for
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where

so that is equivalent to . We will prove
that . From (32), we have

Then

where

Note that if we demonstrate that

the desired result will follow because

It is easy to check that
so that it suffices to prove that or, equiv-
alently, , for , where ,
and .

From (33) and (44), it follows that . Then, from
(35), it follows that .

In order to prove that for , we will
prove that is bounded for any

. In order to prove that is bounded,
consider the multiple integral [cf. (45)]

Integrating over , we obtain

Observe that the first multiple integral on the right-hand side
(RHS), which is denoted , has the same form as . Due to

, we have

Therefore
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Note that is bounded for all so that
is also bounded. Integrating over

all dummy variables, we obtain

where

It can be shown that is bounded
by the same argument as for .
Therefore, is bounded for all

.
Then, from (45), it follows that

.

If , then from (43), it follows that . If ,
then applying the mean-value theorem, we obtain

Since is bounded

Finally, from (43) and , it follows that
.
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ABSTRACT

We consider the problem of tracking the frequency and com-
plex amplitude of a time-varying (TV) harmonic signal using par-
ticle filtering (PF) tools. Similar to previous PF approaches to TV
spectral analysis, we assume that the frequency and complex am-
plitude evolve according to a Gaussian AR(1) model; but we con-
centrate on the important special case of a single TV harmonic.
For this case, we show that the optimal importance function (that
minimizes the variance of the particle weights) can be computed
in closed form. We also develop a suitable procedure to sample
from the optimal importance function. The end result is a cus-
tom PF solution that is more efficient than generic ones, and can
be used in a broad range of important applications that postulate
a single TV harmonic component, e.g., TV Doppler estimation in
communications and radar.

1. INTRODUCTION

Spectral analysis and time-frequency analysis are core tools in sig-
nal processing research (e.g., [10, 3]). Time-varying (TV) spectra
arise in a broad range of important applications: from speech, to
radar, to wireless channel modeling and estimation.

TV spectral analysis tools range from basic non-parametric
approaches such as the spectrogram, to the Wigner-Ville and other
time-frequency distributions, and on to parametric ones such as
polynomial basis expansion models, and TV line spectra mixture
models.

Line spectra mixtures (whether stationary or TV) entail a non-
linear observation equation, which complicates parameter estima-
tion. When the evolution of model parameters can be captured in
state-space form, particle filtering (PF) tools become particularly
appealing for tracking the model parameters. For a multicompo-
nent TV harmonic mixture model, PF approaches have been pur-
sued in [1, 7]. In [1], the evolution of harmonic parameters (fre-
quencies, complex amplitudes, possibly also decay rates) is mod-
eled using a Gaussian auto-regressive (AR) process, and an im-
proved auxiliary particle filtering algorithm is applied to track the
parameters. In [7], a similar Gaussian random walk model is used
for the evolution of the parameters. Unlike [1], temporal slices

∗Corresponding author. Supported in part by the Army Research Lab-
oratory (ARL) through participation in the ARL Collaborative Technology
Alliance (ARL-CTA) for Communications and Networks under Coopera-
tive Agreement DADD19-01-2-0011, and in part by ARO under ERO Con-
tract N62558-03-C-0012.

of the spectrogram are used in the measurement equation of [7]
(which apparently limits the attainable time-frequency resolution),
and an unscented PF algorithm is adapted to track the model pa-
rameters.

Gaussian AR models of the evolution of harmonic mixture pa-
rameters are plausible and convenient in many situations - e.g.,
they can capture smoothness due to inertia or other physical con-
straints. Following [1, 7], we also assume that the frequency and
complex amplitude evolve according to a Gaussian AR(1) model;
but we concentrate on the important special case of a single TV
harmonic. For this case, we show that the optimal importance
function (that minimizes the variance of the particle weights) can
be computed in closed form. We also develop a suitable procedure
to sample from the optimal importance function. The end result is
a custom PF solution that is more efficient than generic ones, and
can be used in a broad range of important applications that postu-
late a single TV harmonic component, e.g., TV Doppler estimation
in communications and radar.

2. DATA MODEL

Let xk := [ωk, Ak]T denote the state at time k, where ωk ∈ � and
Ak ∈ C denote instantaneous frequency and complex amplitude.
The state evolves according to the following AR(1) model:

xk = Hxk−1 + [uk−1 wk−1]
T

where H is 2 × 2 diagonal, H = diag
“
[b1, b2]

T
”

, with b� equal

to 1 − ε� (e.g., 0.999). The process noise sequence is i.i.d. The
process noise vector at time k consists of two independent random
variables with the following marginal statistics:

[uk−1 wk−1]
T

∼
ˆ N `

0, σ2
ω

´
, CN (0, 2σ2

A)
˜T
,

where N , CN stand for the (real) normal and circularly symmetric
complex normal distribution, respectively. The measurements are
related to the state via the measurement equation

yk = xk(2)ejxk(1)k + vk,

where vk denotes i.i.d. CN (0, 2σ2
n) measurement noise .

Given a sequence of observations {yk}T
k=1, the problem of

interest is to estimate the sequence of posterior densities, that is

p
“
xk| {yl}k

l=1

”
, k ∈ {1, · · · , T}. Given p

“
xk| {yl}k

l=1

”
, one

can estimate xk via the associated (posterior) mean, or mode.



3. PARTICLE FILTERING

Particle filtering has emerged as an important sequential state esti-
mation method for stochastic non-linear and/or non-Gaussian state-
space models, for which it provides a powerful alternative to the
commonly used extended Kalman filter. See [2, 5, 6] for recent
tutorial overviews.

In particle filtering, continuous distributions are approximated
by discrete random measures, comprising “particles” and associ-
ated weights. That is, a certain continuous distribution of interest,
say p(x), is approximated as

p(x) ≈
NX

n=1

wnδ(x − xn),

where δ(·) denotes the Dirac delta functional. A useful simplifi-
cation stemming from this approximation is that the computation
of pertinent expectations and conditional probabilities reduces to
summation, as opposed to integration. While this can also be ac-
complished via direct discretization over a fixed grid, the use of
a random measure affords flexibility in adapting the particle loca-
tions to better fit the distribution of interest.

Different types of particle filters may be applied to a given
state-space model. The various particle filters primarily differ in
the choice of so-called importance (or, proposal) function. Differ-
ent importance functions yield different estimation performance -
complexity trade-offs. From the viewpoint of minimizing the vari-
ance of the weights, the optimal importance function is given by
[2, 5]

p(xk|xn,k−1, yk) =
p(yk|xk)p(xk|xn,k−1)R
x
p(yk|x)p(x|xn,k−1)dx

,

where xn,k := [ωn,k, An,k]T denotes the n-th particle at time
k. The optimal importance function usually strikes a better per-
formance - complexity trade-off than other alternatives. There are,
however, two difficulties associated with the use of the optimal im-
portance function. First and foremost, it requires multidimensional
integration to compute the normalization factor, which is usually
intractable. Second, sampling from the optimal importance func-
tion is a rather complicated process. Thankfully, for our particular
model, it turns out that it is possible to carry out the integration
analytically. This is explained next.

Define a dummy variable x := [ω,A]T , and letD(yk,xn,k−1) :=R
x
p(yk|x)p(x|xn,k−1)dx. Then

D(yk,xn,k−1) =

Z
ω∈�

Z
A∈C

1

2πσ2
n

e
− |yk−Aejωk|2

2σ2
n ×

2
4 1√

2πσω

e
− (ω−b1ωn,k−1)2

2σ2
ω

1

2πσ2
A

e
− |A−b2An,k−1|2

2σ2
A

3
5 dAdω

Letting mA := b2An,k−1 , mω := b1ωn,k−1, v := φA − φyk, it
can be shown that

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) × B,

with the multiplicative factor B given by

B = I0(−|mA||yk|
σ2

A + σ2
n

)+

+2

m=+∞X
m=1

(−1)mIm(−|mA||yk|
σ2

A + σ2
n

)e−
(kσω)2m2

2 cos(mkmω−mv)

where Im(·) denotes the modified Bessel function of the first kind.
The sum term above is quite interesting. Due to the negative ex-
ponential dependence on the time index k and the properties of
Bessel functions, it vanishes quickly with k - only the zero-order
Bessel term remains.

We use rejection [4, pp. 40-42] to generate samples from the
optimal importance function p(xk|xn,k−1, yk) =

=

1
2πσ2

n
e
− |yk−Akejωkk|2

2σ2
n

1√
2πσω

e
− (ωk−mω)2

2σω
1

2πσ2
A
e
− |Ak−mA|2

2σ2
A

1
2π(σ2

A
+σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) B

.

Let σ2 :=
σ2

Aσ2
n

σ2
A

+σ2
n

and µ :=
σ2

A|yk|+σ2
n|mA|

σ2
A

+σ2
n

. Using the triangle

inequality, it can be shown that a suitable dominating density is

g(xk|xn,k−1, yk) =
e
− (ωk−mω)2

2σ2
ω e

− (|Ak|−µ)2

2σ2

(2π)2Qo σωσ
,

c :=

√
2πQo

e
− |mA||yk|

σ2
A

+σ2
n Bσ

Qo :=

Z +∞

r=0

1√
2πσ

e
− (r−µ)2

2σ2 dr =
1

2
erfc(− σ2

A|yk| + σ2
n|mA|

σAσn

p
2(σ2

A + σ2
n)

)

Fig. 1 shows a typical plot of the dominated and dominating den-
sities, illustrating the tightness of the bounding step. The overall
algorithm is summarized in Table 1.

4. CRAMER-RAO LOWER BOUND

The Cramér-Rao Lower Bound (CRLB) for our model can be com-
puted using the recursive formula of Tichavsky et al [11] for the
calculation of the Fisher information matrix, Jk. The state equa-
tion in our particular model is linear, Gaussian; this allows consid-
erable simplification of the general result in [11], thus yielding

Jk = D22
k−1 − D21

k−1(Jk−1 + D11
k−1)

−1D12
k−1, k � 0

with

D11
k−1 := −E{∇xk−1

ˆ∇xk−1 log p(xk|xk−1)
˜T },

D12
k−1 :=

ˆ
D21

k−1

˜T
= −E{∇xk

ˆ∇xk−1 log p(xk|xk−1)
˜T },

and
D22

k−1 := −E{∇xk [∇xk log p(xk|xk−1)]
T }−

E{∇xk [∇xk log p(yk|xk)]T }.
At this point, it is convenient to rewrite our model in real-valued
form. Upon defining x′

k := [ωk,�(Ak),�(Ak)]T , where �(·),�(·)
extract the real, resp. imaginary part, we have

x′
k = H′x′

k−1 + uk−1

yk =
h
�{Ake

jωkk} �{Ake
jωkk}

iT

+ vk



where H′ = diag
“
[b1, b2, b3]

T
”

, with b� being 1 − ε�, uk−1 ∼

N (0,Q) with Q = diag
“ˆ
σ2

ω, σ
2
A, σ

2
A

˜T
”

, and vk ∼ N (0,R)

with R = diag
“ˆ
σ2

n, σ
2
n

˜T
”

. Then

D11
k−1 = H′T Q−1H′,

D12
k−1 =

ˆ
D21

k−1

˜T
:= −H′T Q−1,

D22
k−1 = Q−1 + E{F̃k

T
R−1F̃k},

with F̃k being the 2 × 3 matrix

F̃k = ∇x′
k

h
�{Ake

jωkk} �{Ake
jωkk}

iT

.

For D11
k−1 and D12

k−1, note that the expectation operator was dropped
because the respective Jacobians are independent of the target state.
The expectation operator in the expression for D22

k−1 can be easily
estimated using MC integration; it can also be calculated analyt-
ically, albeit the resulting formula appears cumbersome. Putting
terms together yields

Jk = Q−1 + E{F̃k
T
R−1F̃k} − Q−1H′×

(Jk−1 + H′T Q−1H′)−1H′T Q−1, k � 0

The initial density p(x0) is taken to be N (x̄0,Q0), in which case
J0 = Q−1

0 .

5. SIMULATIONS

In our simulations, we benchmark the performance of our optimal
particle filter against the CRLB and two additional particle filters:
an Auxiliary PF, and a regularized PF. The three alternative particle
filters are briefly discussed next.

5.1. Regularized PF (RPF)

This algorithm is identical to the Sampling Importance Resam-
pling (SIR) algorithm, which uses the prior importance function,
except for a “jittering” of the resampled particles (using a normal
distribution kernel) in order to protect the filter from sample im-
poverishment; see, e.g., [2]. Since the process noise involved in
our model is relatively small, this modification is expected to im-
prove the performance over the standard SIR. However, this filter
also has well known disadvantages - the samples are no longer
guaranteed to approximate the posterior density asymptotically in
the number of particles.

5.2. Auxiliary SIR (ASIR) Filter

The particular algorithm used is the Auxiliary SIR filter introduced
by Pitt and Shephard (see [9]). This filter tries to explore the state-
space in a more sophisticated way than the SIR filter. This is done
by resampling at the “previous” time step based on certain point
estimates that capture the essential features of the posterior density.
This approximation can be inefficient when the process noise is
large, or when the auxiliary index varies a lot for a fixed prior.
When process noise is small enough, though, the ASIR filter is
reported to improve the performance over the standard SIR.

5.3. PF Using Optimal Importance Function (PF-OIF)

For our particular model and choice of sampling procedure, an im-
plementation is given in Table 1. Note that this algorithm allows
both the weight update and the resampling step to be performed
prior to sampling from the optimal importance function. An ad-
ditional regularization step can be incorporated, if necessary, to
improve the filter’s diversity after resampling.

5.4. Estimation performance results

In the following, we focus on the frequency estimation perfor-
mance of the three aforementioned filters in a tracking mode, wherein
the initial state is assumed to be known exactly - corresponding to a
Dirac delta initial distribution. The associated CRLB, however, as-
sumes that the initial density is a Gaussian. This mismatch is dealt
with by using a very tight density (very small initial variance) to
approximate a delta distribution. The expectation appearing in the
CRLB was approximated using 100 realizations of the state vector.
The error curves corresponding to the three filters were produced
by averaging over 200 independent runs, each comprising 80 tem-
poral samples. The conditional mean was used to generate point
state estimates. System parameters were set to b� = 0.999, ∀�,
σω = 0.01 , σA = 0.01 , σ2

n = 0.2, and multinomial resampling
was employed. The number of particles, N , was 1000 for RPF,
800 for ASIR, and 30 for PF-OIF. The results are summarized in
Fig. 2. It is satisfying to see that all three filters operate close to
the CRLB, and PF-OIF in particular performs that well with order-
of-magnitude less particles. This being a three-dimensional state-
space, such good performance with only 30 particles is not at all
obvious. RPF and ASIR filters perform very poorly with less than
a few hundred particles in this context. A small number of parti-
cles implies small memory requirements, but on the other hand the
use of rejection in our present implementation of PF-OIF entails a
random delay, which can be significant, depending on system pa-
rameters. We are presently looking at possible ways of speeding
up the sampling step.

6. CONCLUSIONS

We revisited the important problem of tracking a single time-varying
harmonic, whose frequency and complex amplitude evolve accord-
ing to a linear Gaussian separable AR(1) model. A key difficulty in
treating this model comes from the nonlinear measurement equa-
tion. For this model, we derived the optimal importance function
in closed form. This yields interesting insights and opens up the
possibility of designing particle filters that are more efficient than
generic ones. We also derived a procedure to sample from this
optimal importance function, using rejection and the concept of a
dominating density. Our preliminary numerical experiments com-
paring the resulting filter to standard particle filters and the CRLB
show that the proposed PF-OIF algorithm has merits, particularly
in terms of reducing the number of particles, and therefore mem-
ory requirements as well. Our present implementation of PF-OIF
can be slow, due to the use of rejection. We are currently looking
at other alternatives as well as extensions to more general signal
models.
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Table 1. PF using OIF for Tracking A Single Time-Varying Har-
monic (see text for definition of constants)

h
{xi

k}N
i=1

i
= PF −OIF

h
{xi

k−1}N
i=1,yk

i

1. Compute normalized importance weights

• FOR i=1:N,

w̃i
k = 1

2π(σ2
A

+σ2
n)
e
− |yk|2+|b2Ai

k−1|2

2(σ2
A

+σ2
n) × B

• END FOR

• FOR i=1:N,

- Normalize : wi
k = w̃i

k/sum
ˆ{w̃i

k}N
i=1

˜
• END FOR

2. Resample → equally weighted particlesˆ{xi
k−1}N

i=1

˜
= RESAMPLE

ˆ{xi
k−1,w

i
k}N

i=1

˜

3. Sample from the optimal importance density :

• FOR i=1:N,

- Calculate C :=
√

2πQo/e
−

|b2Ai
k−1||yk|

σ2
A

+σ2
n Bσ

- Set U := 1/eps and τ := 1/eps

• WHILE (Uτ > 1)

- Draw candidate sample ∼ dominating density:

xi
k ∼

e
−

(ωk−b1ωi
k−1)2

2σ2
ω e

− (|Ak|−µ)2

2σ2

(2π)2Qo σωσ

- Set τ := C
Dominating(xi

k)

Optimal(xi
k
)

-Draw a sample U ∼ Uniform[0, 1]

• END WHILE

• END FOR
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ABSTRACT

The problem of tracking the frequency and complex amplitude of
a frequency-hopped complex sinusoid is considered, using a novel
stochastic state-space formulation and particle filtering tools. The
problem is of considerable interest for interference mitigation in
frequency-hopped wireless networks, and in military communica-
tions. The proposed particle filtering approach has a number of
desirable features. It affords high-resolution estimates of carrier
frequency and hop timing, manageable complexity (linear in the
number of processed samples), and flexibility in tracking signals
with irregular hopping patterns due to intentional timing jitter. The
proposed state-space model is not only parsimonious, but fortu-
itous as well: it turns out that the associated optimal importance
function can be computed in closed form, and thus samples from
it can be drawn using rejection techniques. Both prior and opti-
mal importance sampling versions are developed and illustrated in
pertinent simulations.

Keywords: Frequency hopping, spectral analysis, estimation
of time-varying line spectra, sequential importance sampling, par-
ticle filtering

1. INTRODUCTION

Tracking the frequency of a time-varying complex sinusoid is an
important problem which arises in numerous applications. In speech
processing, for example, one is often interested in tracking formant
frequencies. In wireless communications, it arises in the context of
frequency hopping, when the receiver has no prior knowledge of
the hopping pattern, or is simply out of sync with the transmitter’s
hopping pattern generator [2, 8, 6, 7].

Both non-parametric time-frequency analysis, and paramet-
ric techniques have been developed for the more general prob-
lem of tracking a time-varying sinusoid, and can be applied to the
problem of tracking a frequency-hopped sinusoid as well. How-
ever, existing methods have limitations, especially when used to
track a frequency-hopped signal. Non-parametric methods, like
the spectrogram, or coarse channelization [2] suffer from limited
frequency- and temporal-resolution due to leakage. It is possible
to employ time-frequency distributions that are better-adapted to
frequency hopping [3], but the results are still not very satisfac-
tory. Parametric methods for frequency hopping explicitly model
the frequency as piecewise-constant, assume a “budget” on the

∗Corresponding author. Supported in part by the Army Research Lab-
oratory (ARL) through participation in the ARL Collaborative Technology
Alliance (ARL-CTA) for Communications and Networks under Coopera-
tive Agreement DADD19-01-2-0011, and in part by ARO under ERO Con-
tract N62558-03-C-0012.

number of hops within a given observation interval, and employ
dynamic programming to track the sought frequency and complex
amplitude parameters [6, 7]. Other than an upper bound on the
number of hops, the methods in [6, 7] do not assume anything else
about the frequencies or complex amplitudes, which are treated as
deterministic unknowns.

A different viewpoint is adopted in this paper. A stochas-
tic non-linear, non-Gaussian state-space formulation is proposed,
which captures frequency hopping dynamics in a probabilistic sense.
The proposed formulation is naturally well-suited for the applica-
tion of particle filtering for state estimation. Compared to the prior
state-of-art in [6, 7], the new approach has a number of desirable
features:

• Computational complexity: The complexity of particle fil-
tering is O(NT ), where N is the number of particles and T is
the number of temporal samples. The complexity of dynamic pro-
gramming, on the other hand, is roughly O(T 4). This means that
only short segments can be processed by dynamic programming,
and then one has to rely on hop periodicity to segment the rest of
the data. This has two disadvantages: first, the more samples are
processed the better from an estimation performance perspective;
second, hop timing is often intentionally randomized as a counter-
measure.

• Flexibility: The state-space model in the particle filtering
formulation can be easily tailored to match a given scenario (e.g.,
spread bandwidth and modulation).

The proposed state-space model is simple and fortuitous: the
associated optimal importance function can be computed in closed
form, and thus samples from it can be drawn using rejection tech-
niques. Both prior and optimal importance sampling versions are
developed and compared in pertinent simulations.

2. DATA MODEL AND PROBLEM STATEMENT

We propose the following non-linear non-Gaussian stochastic state-
space model of a frequency-hopped complex sinusoid. Let xk :=
[ωk, Ak]T denote the state at time k, where ωk ∈ [−π, π) and
Ak ∈ C denote instantaneous frequency and complex amplitude.
Let uk := [bk, ω̃k, Ãk]T denote an auxiliary sequence of indepen-
dent and identically distributed (i.i.d.) vectors with independent
components and the following marginal statistics: bk is a binary
random variable with Pr(bk = 1) = h; ω̃k is uniformly dis-
tributed over [−π, π), denoted U([−π, π)); and Ãk is CN (0, σ2

A),
i.e., complex circular Gaussian of variance σ2

A. Then

xk = f(xk−1,uk) =

�
xk−1 ,uk(1) = 0

[uk(2), uk(3)]T ,uk(1) = 1
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=

�
xk−1 , w.p. 1 − h�U ([−π, π)) , CN (0, σ2

A)
�T

, w.p. h
,

yk = xk(2)ejxk(1)k + vk,

where vk denotes i.i.d. CN (0, σ2
n) measurement noise, and uk(1)

the hop variable.
The above state-space formulation models frequency hopping

in a probabilistic fashion. Hops are random, i.i.d., with hop proba-
bility h per sample interval. This is different from traditional mod-
els of frequency hopping, which assume that the frequency hops
periodically, and is motivated by the following considerations:

• In military communications, intentional jitter is often intro-
duced in the hop timing in order to reduce the probability
of detection by unintended receivers and improve immunity
to jamming. Timing jitter yields a pseudo-random quasi-
periodic, or even seemingly aperiodic hop timing sequence.

• The above probabilistic model captures information about
the average hop rate in a “soft” ensemble sense: the ex-
pected number of hops over a long observation interval T is
hT . While less accurate if the exact hop period is known,
probabilistic modeling is more robust with respect to hop
period inaccuracies. Finally,

• The proposed probabilistic model is ideally suited for on-
line sequential estimation via particle filtering.

It is worth elaborating on some of the implicit assumptions of
the proposed state-space model.

1. When the (discrete-time, baseband-equivalent) frequency
hops, it hops anywhere within [−π, π) with a uniform den-
sity. This is well-suited for carrier hopping, which is usu-
ally discontinuous. Modulation-induced variations can (and
should) be neglected when the objective is to estimate car-
rier frequency, but could also be explicitly modeled using,
e.g., a smooth auto-regressive frequency variation model
in-between hops, in lieu of the simplified constant model
postulated above. This extension is relatively simple.

2. When the frequency hops, the complex amplitude also changes
according to an i.i.d. complex Gaussian distribution. This is
also well-motivated for carrier hopping, for every time the
carrier frequency hops beyond the coherence bandwidth of
the channel, a new channel realization is encountered.

The problem, then, can be stated as follows: Given a sequence
of observations {yk}T

k=1, estimate the sequence of system states
{xk}T

k=1 - that is, the unknown carrier frequencies and complex
amplitudes.

3. PARTICLE FILTERING SOLUTIONS

Particle filtering has emerged as an important sequential state esti-
mation method for stochastic non-linear and/or non-Gaussian state-
space models, for which it provides a powerful alternative to the
commonly used extended Kalman filter. See [1, 5] for recent tuto-
rial overviews. In particle filtering, continuous distributions are ap-
proximated by discrete random measures, comprising “particles”
and associated weights. That is, a certain continuous distribution
of interest, say p(x), is approximated as

p(x) ≈
N�

n=1

wnδ(x − xn),

where δ(·) denotes the Dirac delta functional. A useful simplifi-
cation stemming from this approximation is that the computation
of pertinent expectations and conditional probabilities reduces to
summation, as opposed to integration. While this can also be ac-
complished via direct discretization over a fixed grid, the use of
a random measure affords flexibility in adapting the particle loca-
tions to better fit the distribution of interest.

3.1. Basics of particle filtering

If we aim for an on-line filtering algorithm, in which the state at
time k should be estimated from measurements up to and includ-
ing time k, the key distribution of interest is the posterior den-

sity p
�
xk | {yl}k

l=1

�
. Given this density, one can estimate the

state at time k, e.g., via the associated (posterior) mean, or mode.
The basic idea of particle filtering, then, is to begin with a ran-
dom measure approximation of the initial state distribution, and,
as measurements become available, derive updated random mea-

sure approximations of p
�
xk | {yl}k

l=1

�
, k ∈ {1, 2, · · · }. That

is, we seek random measure approximations

p̂
�
xk | {yl}k

l=1

�
=

N�
n=1

wn,kδ(xk − xn,k)

In particle filtering, the updates - the derivation of p̂
�
xk | {yl}k

l=1

�

from p̂
�
xk−1 | {yl}k−1

l=1

�
- are based on the Bayes rule [1, 5].

A random measure approximation comprises two components:
the particles (locations) and the associated weights. If we could

sample from the sought posterior p
�
xk | {yl}k

l=1

�
, then all par-

ticle weights would have been equal. Unfortunately, such direct
sampling is not possible in most cases, and thus we resort to sam-
pling from a so-called importance function that “resembles” the
desired posterior, and from which samples can be drawn with rel-
ative ease. The mismatch between the sought density and the im-
portance function is compensated in the calculation of weights,
chosen proportional to their ratio evaluated at each particle [1, 5].
The choice of importance function is a very important step in the
design of a particle filtering algorithm. Two common choices are
discussed next.

3.2. Prior importance function

Perhaps the most intuitive choice of importance function is the
prior importance function p(xk | xn,k−1); i.e., the n-th particle
is updated by propagating it through the state-evolution part of the
system: xn,k = f(xn,k−1,un). This is an often-made choice, for
simplicity considerations. The drawback is that particles evolve
without regard to the latest measurement, which only comes into
play in the ensuing weight update. When using the prior impor-
tance function, the said weight update at time instant k is given
by wn,k = wn,k−1p(yk | xn,k), followed by normalization to en-
force

�N
n=1 wn,k = 1.

Regardless of the particular importance function employed, a
common problem in particle filtering is degeneracy: the weights
of all but a few particles tend to become negligible after a few
iterations [1, 5]. Degeneracy can be detected via degeneracy mea-
sures, and mitigated via resampling techniques [1, 5]. Resampling
the discrete measure replicates particles with large weights and re-
moves those with negligible weights. All particle weights become
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equal after resampling. There exist several computationally effi-
cient (O(N)) resampling schemes that can be used to avoid the
quadratic cost of brute-force resampling [1, 5].

3.3. Optimal importance function

From the viewpoint of minimizing the variance of the weights, the
optimal importance function is given by [1, 5]

p(xk|xn,k−1, yk) =
p(yk|xk)p(xk|xn,k−1)�
x
p(yk|x)p(x|xn,k−1)dx

.

Notice that, in contrast to the prior importance function, the above
takes into account the newly available measurement in the parti-
cle update itself. While both the prior importance function and the
optimal one yield consistent algorithms1, the optimal one usually
works well with much smallerN , and is therefore preferable from
a performance point of view. There are, however, two difficulties
associated with the use of the optimal importance function. First,
it requires multidimensional integration to compute the normal-
ization factor, which is often intractable. Second, sampling from
the optimal importance function is more complicated than sam-
pling from the prior. The smaller number of particles needed to
attain satisfactory performance with the optimal importance func-
tion usually more than offsets the cost of drawing samples from it;
the integration problem remains the bottleneck in most cases [1].
Thankfully, for our particular model, it turns out that it is possible
to carry out this integration analytically. This is explained next.

Denote xk := [ωk, Ak]T , where ωk ∈ [−π, π), and Ak ∈ C;
likewise xn,k−1 := [ωn,k−1, An,k−1]

T , and a dummy variable
x := [ω,A]T . Let D(yk,xn,k−1) :=

�
x
p(yk|x)p(x|xn,k−1)dx.

Then

D(yk,xn,k−1) =

�
ω∈[−π,π)

�
A∈C

1

2πσ2
n

e
− |yk−Aejωk|2

2σ2
n ×

�
(1 − h)δ(ω − ωn,k−1)δ(A−An,k−1) +

h

2π

1

2πσ2
A

e
− |A|2

2σ2
A

�
dAdω

This integral can be computed by completing the squares, yield-
ing

D(yk,xn,k−1) =
1

2π

h

σ2
n + σ2

A

e
− |yk|2

2(σ2
n+σ2

A
) +

1

2π

1 − h

σ2
n

e
− |yk−An,k−1e

jωn,k−1k|2
2σ2

n .

For the above optimal choice of the importance function, the
weight update is given by

wn,k ∝ wn,k−1p(yk|xn,k−1) = wn,k−1D(yk,xn,k−1),

followed by normalization to 1. What is missing is a way to sample
from the optimal importance function. As a first step towards this

1In the sense that the pertinent discrete measure approximations con-
verge to the sought continuous distributions as N → ∞, see [1] and refer-
ences therein.

end, note that p(xk|xn,k−1, yk) can be written as a mixture of two
pdfs

p(xk|xn,k−1, yk) = (1−h̃)p0(xk|xn,k−1, yk)+h̃p1(xk|xn,k−1, yk),

where

p0(xk|xn,k−1, yk) := δ(ωk − ωn,k−1)δ(Ak −An,k−1),

p1(xk|xn,k−1, yk) :=

1
2π

1
2πσ2

n

1
2πσ2

A
e
− |yk−Akejωkk|2

2σ2
n e

− |Ak|2
2σ2

A

1
2π

1
σ2

n+σ2
A
e
− |yk|2

2(σ2
n+σ2

A
)

,

and

h̃ := h

1
2π

1
σ2

n+σ2
A
e
− |yk|2

2(σ2
n+σ2

A
)

D(yk,xn,k−1)
.

It follows that with probability 1− h̃ we simply copy the previous
particle, else we draw a particle from p1(xk|xn,k−1, yk). We will
use rejection sampling techniques for this latter step, as explained
next.

3.4. Sampling from the optimal importance function: Rejec-
tion

The basic idea of rejection-based sampling can be summarized as
follows [4, pp. 40-42]. Suppose we wish to draw samples from
a density φ(x), for which there exists a dominating density g(x)
and a known constant c such that φ(x) ≤ cg(x), ∀x. In practice,
we choose g(x) to be easy to sample from, and such that c is as
small as possible. The rejection method then works as follows.
We i) draw a sample x from g(·) and an independent sample U ∼
U([0, 1]); ii) set τ := c g(x)

φ(x)
; iii) test whether Uτ ≤ 1; if so, we

accept the sample x; else we reject it and repeat the process.
It can be shown that the above rejection method generates sam-

ples from the desired density φ(.), and the mean number of itera-
tions until a sample is accepted is c (thus the desire to keep c ≥ 1
as small as possible). Furthermore, the distribution of the number
of trials is geometic with parameter 1 − 1

c
, which means that the

probabilities of longer trials decay exponentially [4, p. 42].
In our present context, we wish to sample from the density

p1(xk|xn,k−1, yk). Define

µ :=
|yk|σ2

A

σ2
n + σ2

A

, σ2 :=
σ2

nσ
2
A

σ2
n + σ2

A

.

Using the triangle inequality, it can be shown that the following is
a suitable dominating density:

g(xk|xn,k−1, yk) =
e
− (|Ak|−µ)2

2σ2

(2π)5/2Q0σ
,

for which it holds that p1(xk|xn,k−1, yk) ≤ cg(xk|xn,k−1, yk),
with

c :=
√

2πQ0/σ ≥ 1,

Q0 :=

� ∞

r=0

1

σ
√

2π
e
− (r−µ)2

2σ2 dr =
1

2
erfc(− |yk|σA

σn

�
2(σ2

n + σ2
A)

).
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Through experimentation, we have found that even better results
can be attained using an outer rejection loop, which declines candi-
dates xn,k generated through rejection when the following metric
exceeds a certain small value (set to 3×10−3 in our experiments):

h̃(yk,xn,k) := h

1
2π

1
σ2

n+σ2
A
e
− |yk|2

2(σ2
n+σ2

A
)

D(yk,xn,k)
,

where D(·, ·, ·) was defined in Sec. 3.3. This outer rejection loop
selects particles that are consistent with the new measurement (cf.
the functional form of the denominator) and, at the same time, have
large weight after the associated update. We do not have a full
explanation at this point, yet this version of the algorithm appears
to yield the best results - in particular, better than the one based
on the optimal importance function. Note that the latter is optimal
with respect to minimizing the variance of the weights after the
update (and typically works better than the one based on the prior
importance function), but it is not necessarily optimal in terms of
the performance - complexity trade-off.

4. SIMULATIONS

We now present simulation results for the three algorithms: the
basic one using the prior importance function (denoted P), the one
using the optimal importance function (O), and the one using the
outer rejection loop as above (V). Fig. 1 shows a plot of a typi-
cal simulation run, using the posterior mean to form instantaneous
frequency estimates and multinomial resampling for all three algo-
rithms. Monte-Carlo (MC) simulation results are presented in Fig.
2. The Root Mean Square Error (RMSE) frequency estimation
performance of the three algorithms is assessed using the follow-
ing parameters: h = 0.01, T = 100, σ2

A = 1, σ2
n = 0.2, and the

number of MC trials is 300. The execution time for P is O(NT ),
whereas for O and V the execution time is also an increasing func-
tion of h. As a result, O and/or V can be faster than P, even for the
same number of particles. For our simulation setup above, P, O,
and V, each with 1K particles, have about the same average execu-
tion time, yet V does much better in terms of RMSE as shown in
Fig. 2. It takes 3K particles for O and 5K particles for P to reach
the performance of V with 1K particles.

5. CONCLUSIONS

We have developed three new particle filtering algorithms for track-
ing a frequency-hopped complex sinusoid, based on a novel stochas-
tic state-space formulation. The algorithms range from a plain-
vanilla version that uses the prior importance function (P), to a
more advanced version that employs the optimal importance func-
tion (O), and, finally, an improvement of the latter using a problem-
specific outer rejection loop (V). The two latter algorithms afford
considerably better performance - complexity trade-offs.
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ABSTRACT

We consider the problem of transmit beamforming to multiple co-
channel multicast groups. Since the direct minimization of transmit
power while guaranteeing a prescribed minimum signal to interfer-
ence plus noise ratio (SINR) at each receiver is nonconvex and NP-
hard, we present convex SDP relaxations of this problem and study
when such relaxations are tight. Our results show that when the
steering vectors for all receivers are of Vandermonde type (such as
in the case of a uniform linear array and line-of-sight propagation),
a globally optimum solution to the corresponding transmit beam-
forming problem can be obtained via an equivalent SDP reformula-
tion. We also present various robust formulations for the problem
of single-group multicasting, when the steering vectors are only ap-
proximately known. Simulation results are presented to illustrate the
effectiveness of our SDP relaxations and reformulations.

1. INTRODUCTION

Consider a downlink transmission scenario where the transmitter is
equipped withN antennas and there areM receivers. Let hi denote
the N × 1 complex channel vector from each transmit antenna to
the single receive antenna of user i ∈ {1, . . . ,M}. Let there be a
total of 1 ≤ G ≤ M multicast groups, {G1, . . . ,GG}, where Gk

is the index set for receivers participating in multicast group k, and
k ∈ {1, . . . , G}. Assume that Gk ∩ Gl = ∅, l �= k, ∪kGk =

{1, . . . ,M}, and, denoting Gk := |Gk|,
�G

k=1Gk = M .

Let wH
k denote the beamforming weight vector applied to theN

transmitting antenna elements to transmit multicast stream k. The
signal transmitted by the antenna array is equal to

�G
k=1 wH

k sk(t),
where sk(t) is the temporal information-bearing signal directed to
receivers in multicast group k. This setup includes the case of broad-
casting (G = 1) [6], and the case of individual user transmissions
(G = M ) [2]) as special cases. If each sk(t) is zero-mean white
with unit variance, and the waveforms {sk(t)}G

k=1 are mutually un-
correlated, then the total power radiated is equal to

�G
k=1 ||wk||22.

The joint design of transmit beamformers subject to received
SINR constraints can then be posed as follows:

∗Tel: +302821037227, Fax: +302821037542, E-mail: (kari-
pidis,nikos)@telecom.tuc.gr. Supported in part by the U.S. ARO under ERO
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†E-mail: luozq@ece.umn.edu. Supported in part by the National Science
Foundation, Grant No. DMS-0312416, and by the Natural Sciences and En-
gineering Research Council of Canada, Grant No. OPG0090391.

P :

min
{wk∈CN}G

k=1

G�

k=1

‖wk‖2
2

s.t. : |wH
k hi|2�

l �=k |wH
l

hi|2+σ2
i
≥ ci, ∀i ∈ Gk, ∀k ∈ {1, . . . , G}.

Problem P was considered in [5] and it was found to be NP-hard,
in the case of general steering vectors, based on arguments proved
in earlier work [6]. Therefore, a two step approach was proposed
and shown to yield high-quality approximate solutions at manage-
able complexity cost. Specifically, in the first step, the original non-
convex quadratically constrained quadratic programming (QCQP)
problem P is relaxed to a semidefinite program (SDP) (denoted as
R), by changing the optimization variables to Xk := wkw

H
k and

dropping the associated non-convex constraints {rank(Xk) = 1}G
k=1.

In the second step, a randomization procedure is employed to gen-
erate candidate beamforming vectors from the solution of R. For
each candidate set of vectors, a multi-group power control (MGPC)
linear programming (LP) problem is solved to ensure that the con-
straints of the original problem P are met. The final solution of this
algorithm is the set of beamforming vectors yielding the smallest
MGPC objective. The overall complexity of the algorithm is man-
ageable, since the SDP and LP problems can be solved efficiently
using interior point methods and the randomization procedure is de-
signed so that its computational cost is negligible compared to the
aforementioned problems.

2. EXACT GLOBALLY OPTIMAL SOLUTION IN THE
VANDERMONDE CASE

When a uniform linear array (ULA) is used for far-field transmit
beamforming, the N × 1 complex vectors which model the phase
shift from each transmit antenna to the receive antenna of user i ∈
{1, . . . ,M} are Vandermonde hi = [1 ejθi ej2θi · · · ej(N−1)θi ]T .
In this scenario, we observed that when the relaxed SDP problem R
in [5] is feasible, its optimal solution, i.e., the blocks {Xopt

k }G
k=1, are

all consistently rank-one. This means that problem R is then equiv-
alent to, and not a relaxation of, the original problem P . Thus, the
second step of the proposed algorithm, comprising the randomiza-
tion - multicast power control loop, turns out being redundant and the
set of the optimum beamforming vectors {wopt

k }G
k=1 can be formed

simply using the principal components of the blocks {Xopt
k }G

k=1.
This observation suggests that, in the case of Vandermonde chan-
nel vectors, the original problem P is no longer NP-hard and can be
equivalently posed as a convex optimization problem.

Towards this end, note that for the special case of Vandermonde
steering vectors, the signal power received at each user can be rewrit-
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ten as
���wH

k hi

���
2

=

N−1�

�=−(N−1)

rk(�)ejθi�, (1)

where � := n −m and rk(�) :=
�min(N−�,N)

m=max(1−�,1) wk(m)w∗
k(m +

�). Let us consider rk(�) for 0 < � ≤ N − 1, i.e., rk(�) =�N−�
m=1 wk(m)w∗

k(m + �). Then r∗k(−�) = rk(�), i.e., rk(�) is
conjugate-symmetric about the origin. Define the (2N − 1) × 1
vector

rk := [rk(−N + 1), · · · , rk(−1), rk(0), rk(1), · · · , rk(N + 1)]T ,
(2)

and the associated (2N − 1) × 1 “extended” steering vector

fi := [e−jθi(N−1), · · · , e−jθi , 1, ejθi , · · · , ejθi(N−1)]T . (3)

Then
��wH

k hi

��2 = fT
i rk. Furthermore, note that rk(0) = rk(N) =�N

m=1 wk(m)w∗
k(m) = ||wk||22. It therefore follows that the orig-

inal problem P can be equivalently written as follows

min
{rk}G

k=1

G�

k=1

rk(N)

s.t. : fT
i rk ≥ ci

�

��=k

fT
i r� + ciσ

2
i , ∀i ∈ Gk, ∀k ∈ {1, . . . , G} ,

rk : autocorrelation vector, ∀k ∈ {1, . . . , G} ,
where the fact that the terms in the denominator are all non-negative
has also been taken into account.

This is a problem comprising a linear cost, M linear inequal-
ity constraints, and autocorrelation constraints. Each of the latter is
equivalent to a linear matrix inequality (LMI) constraint [1]. Specif-
ically, rk(m), ∀m ∈ {−N+1, . . . , N−1} belongs to the set of fi-
nite autocorrelation sequences if and only if rk(m) = trace(EmYk),
∀m ∈ {−N+1, . . . , N−1}, for some positive semidefinite matrix
Yk ∈ C

N×N , where E is the N ×N unit-shift matrix with ones in
the first lower sub-diagonal and zeros elsewhere.

Thus, introducing G positive semidefinite N × N “slack” ma-
trices, one for each autocorrelation vector rk, the autocorrelation
constraints are equivalently converted to linear equality constraints
plus positive semidefinite constraints as follows

V :

min
{rk}G

k=1, {Yk}G
k=1

G�

k=1

rk(N)

s.t. : fT
i rk − ci

�
��=k fT

i r� ≥ ciσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},
rk(m) = trace(EmYk),

∀m ∈ {−N + 1, . . . , N − 1}, ∀k ∈ {1, . . . , G}
Yk 
 0, ∀k ∈ {1, . . . , G}.

Problem V is an SDP problem which can be efficiently solved
by any standard SDP solver, such as SeDuMi [7], by means of in-
terior point methods. Once the optimum autocorrelation sequences�
ropt

k

�G

k=1
are found, they can be factored to obtain the respective

optimum beamforming vectors
�
wopt

k

�G

k=1
, using spectral factor-

ization techniques [9].

A simple simulation experiment illustrates the equivalence of
the aforementioned algorithm to the one proposed in [5]. Figures
1 and 2 show the optimized transmit beam patterns generated by
algorithm 1 (SDP relaxation problem R and randomization - mul-
ticast power control problem MGPC) and algorithm 2 (SDP prob-
lem V and spectral factorization), respectively. The ULA consists of
N = 4 transmit antenna elements spaced λ/2 apart. The M = 24
users are considered evenly clustered in G = 2 groups, at an angle
of 0.5 degrees to their neighboring ones. The angular cluster separa-
tion (defined as the minimum angle between any 2 users belonging
to different groups) is set to 10 degrees. The received SINR con-
straints are set to 10dB for all users and the noise variance to σ2 = 1
for all channels.

3. ROBUST RELAXATION OF SINGLE-GROUP
MULTICAST BEAMFORMING

In this section we provide a robust relaxation to the problem of
downlink transmit beamforming towards a single multicast group,
which was considered in [6]. The key difference here is that full
channel state information (CSI) is no longer available; instead, the
channel vectors are assumed to lie in a ball with known center and
radius. Specifically, letting h̃i := hi/

�
ciσ2

i denote the normal-
ized channel vectors, we assume that h̃i ∈ Bε(h̄i) := {h̃i|h̃i =
h̄i + e, ‖e‖ ≤ ε}. The robust design of the beamformer that min-
imizes the transmitted power, subject to constraints on the received
SNR can be written as

RB :
min

w∈CN
‖w‖2

2

s.t. : |wH h̃i|2 ≥ 1, ∀ h̃i ∈ Bε(h̄i), ∀ i ∈ {1, . . . ,M}.

The constraints in problem RB guarantee that the received signal
power in all M users will be larger than unity in the worst case, i.e.
for the particular channel vector h̃i that corresponds to the smallest
value of |wH h̃i|2. Each one of these constraints is equivalent to the
semi-infinite nonconvex constraint

|wH h̃i| ≥ 1, ∀ h̃i ∈ Bε(h̄i), (4)

which admits a convex (SOC) reformulation, as it was shown in [8].
First note that equation (4) can be equivalently written as

min
h̃i∈Bε(h̄i)

|wH h̃i| ≥ 1. (5)

Under the natural constraint |wH h̄i| ≥ ε‖w‖2, it can be shown [8]
that

min
h̃i∈Bε(h̄i)

|wH h̃i| = |wH h̄i| − ε‖w‖2, (6)

and we can recast equation (5) as

|wH h̄i| − ε‖w‖2 ≥ 1 ⇔ |wH h̄i| ≥ 1 + ε‖w‖2. (7)

The robust beamforming problem RB is thus equivalently writ-
ten as

RB′ :
min

w∈CN
‖w‖2

2

s.t. : |wH h̃i| ≥ 1 + ε‖w‖2, ∀ i ∈ {1, . . . ,M}.
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Let us also consider the corresponding original non-robust beam-
forming (ONRB) problem:

min
w∈CN

‖w‖2
2

s.t. : |wH h̃i| ≥ 1, ∀i ∈ {1, . . . ,M}.
Our main result in this section is the following:

Claim 1 Let w′ be an exact solution of RB′. Then w′/(1+ε‖w′‖)
is an exact solution of ONRB. Conversely, if wo is an exact solution
of ONRB, then wo/(1 − ε‖wo‖) is an exact solution of RB′.

Proof: Forward: The proof is based on two Lemmas. The first is the
following Scaling Lemma:

Lemma 1 wo is an exact solution of ONRB if and only if two is an
exact solution of

min
w∈CN

‖w‖2
2

s.t. : |wH h̃i| ≥ t, ∀i ∈ {1, . . . ,M}.

Proof: |wH
o h̃i| ≥ 1 =⇒ |twH

o h̃i| ≥ t. Suppose there exists w1

with |wH
1 h̃i| ≥ t, ∀i, and ‖w1‖2

2 < t2‖wo‖2
2. Consider w2 :=

w1/t. It satisfies |wH
2 h̃i| ≥ 1, and

‖w2‖2
2 =

1

t2
‖w1‖2

2 <
1

t2
t2‖wo‖2

2 = ‖wo‖2
2, (8)

which contradicts optimality of wo for ONRB. The converse is ob-
vious. �

Lemma 2 Let w′ be an exact solution of RB′. Then, w′ is an exact
solution of the following non-robust beamforming problem (NRB)

min
w∈CN

‖w‖2
2

s.t. : |wH h̃i| ≥ 1 + ε‖w′‖2, ∀i ∈ {1, . . . ,M}.
Proof: Clearly, w′ is a feasible solution of NRB, since it satisfies
the constraints. Suppose there exists w′′ that also satisfies the con-
straints of NRB, but with ‖w′′‖2

2 < ‖w′‖2
2. Then 1 + ε‖w′‖2 >

1 + ε‖w′′‖2
2, and thus w′′ also satisfies the constraints of problem

RB′, with ‖w′′‖2
2 < ‖w′‖2

2. This contradicts optimality of w′ for
RB′. �

Now suppose that w′ is an exact solution of RB′. It follows
from the last Lemma that it is also an exact solution of NRB. Then,
from the Scaling Lemma, it follows that w′/(1+ ε‖w′‖) is an exact
solution of ONRB. This completes the forward part of the proof of
Claim 1. �

Converse: Let wo be a solution of ONRB. Then, according to
the Scaling Lemma

w′ =
wo

1 − ε‖wo‖2
(9)

is a solution of the modified NRB (MNRB) problem

min
w∈CN

‖w‖2
2

s.t. : |wH h̃i| ≥ 1

1 − ε‖wo‖2
, ∀i ∈ {1, . . . ,M}.

We will show that w′ is also a solution of RB′. Since w′ is a
solution of MNRB, it follows that

|w′H h̃i| ≥ 1

1 − ε‖wo‖2
. (10)

However, from (9), it follows (provided that 1 − ε‖wo‖2 ≥ 0, i.e.,
ε ≤ 1

‖wo‖2
) that

‖w′‖2 =
‖wo‖2

1 − ε‖wo‖2
⇔ ‖wo‖2 =

‖w′‖2

1 + ε‖w′‖2
.

Hence

1

1 − ε‖wo‖2
=

1

1 − ε‖w′‖2
1+ε‖w′‖2

= 1 + ε‖w′‖2, (11)

so w′ indeed satisfies the constraints of RB′. Suppose there exists
w′′, such that ‖w′′‖2 < ‖w′‖2 which also satisfies the constraints
of RB′. From the forward proof it follows that w′′

1+ε‖w′′‖2
satisfies

the constraints of ONRB, with norm ‖w′′‖2
1+ε‖w′′‖2

. On the other hand,

wo in (9) is an exact solution of ONRB, and ‖w′‖2 = ‖wo‖2
1−ε‖wo‖2

yielding ‖wo‖2 = ‖w′‖2
1+ε‖w′‖2

. But x
1+x

is monotone increasing in

x > 0. Therefore, ‖w′′‖ < ‖w′‖ implies that

‖w′′‖2

1 + ε‖w′′‖2
<

‖w′‖2

1 + ε‖w′‖2
= ‖wo‖2, (12)

which contradicts optimality of wo for ONRB. Thus, the proof of
Claim 1 is complete. �

Claim 1 implies that we can derive an exact solution of the ro-
bust beamforming problem RB′ by a simple scaling of a solution to
ONRB. Since both problems are NP-hard in general, in practice this
translates to the following algorithm:

1. Compute a good feasible solution wo for ONRB using the
SDP relaxation approach in [6].

2. A good feasible solution of RB′ is then wo/(1 − ε‖wo‖2).

Letting co and c′ denote the norms of the optimal solutions of ONRB
and RB′, respectively, we also have

co =
c′

1 + εc′
⇔ c′ =

co
1 − εco

. (13)

Claim 1 further suggests that if we set ε > 1/‖wo‖2, then the robust
problem would be infeasible.

4. EXACT ROBUST SOLUTION IN THE SINGLE-GROUP
VANDERMONDE CASE

Let us consider again the case when the steering vectors are Vander-
monde. Then, the single-group (G = 1) version of problem V can
be written as

V1 :
min

r∈R×CN−1
eT
1 r

s.t. : Re[hH
i Ĩr] ≥ ciσ

2
i , ∀ i ∈ {1, . . . ,M},

r� = trace(E�Y), ∀� ∈ {0, . . . , N − 1},
Y 
 0.
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where e1 is the first column of the N ×N identity matrix,

r� =

N−��
m=1

w∗
mwm+�, ∀� ∈ {0, . . . , N − 1}, (14)

r = [r0 r1 · · · rN−1]
T ∈ R × C

N−1, (15)

and

Ĩ =

�
1 0
0 2IN−1

�
∈ R

N . (16)

A robust extension of the problem V1 would be to ask that the
SNR constraints are still met, when the angles {θi}M

i=1 are not known
exactly, but allowing an estimation error up to ∆, i.e., they are as-
sumed to lie within the intervals θi ∈ [θ̄i − ∆, θ̄i + ∆]. In such
scenario, the SNR constraints are defined as

Re[hH
i Ĩr] ≥ ciσ

2
i , ∀ i ∈ {1, . . . ,M}, ∀θi ∈ [θ̄i − ∆, θ̄i + ∆].

(17)
An interpretation of these constraints is that they require (the real
part of) certain trigonometric polynomials to be nonnegative over a
segment of the unit circle. As it is shown in [4], constraints of this
form can be equivalently reformulated to the LMI constraints

Ĩr − (ciσ
2
i + jξi)e1 = L∗(Xi) + Λ∗(Zi; θ̄i − ∆, θ̄i + ∆), (18)

∀ i ∈ {1, . . . ,M}, where Xi ∈ C
N×N 
 0, Zi ∈ C

(N−1)×(N−1) 

0, ξi ∈ R is unconstrained, and the linear operators L∗ and Λ∗ are
defined by equations (35) and (36)(along with (16)) in [4], respec-
tively. Hence, the problem encountered in this section is an SDP
problem, since it consists of a linear cost, MN linear equality con-
straints and 2M positive semidefinite constraints.

5. CONCLUSIONS

Whereas multi-group multicast transmit beamforming under SINR
constraints is NP-hard in general [5, 6], we have shown that, in the
special case of Vandermonde steering vectors it is in fact a semidef-
inite problem, which can be efficiently solved. We have also con-
sidered robust beamforming solutions under channel uncertainty for
the case of a single multicast group. For general steering vectors, we
have shown that exact solutions of the robust and non-robust versions
of the problem are related via a simple one-to-one scaling transfor-
mation. Since both problems are NP-hard, this suggests an algorithm
to generate a quasi-optimal solution for one given a quasi-optimal
solution for the other. In the important special case of Vandermonde
steering vectors, we have shown that the robust version of the prob-
lem is convex as well. This robust solution can be extended to the
multi-group Vandermonde case.
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Algorithm 1: SDR + Randomization + MGPC

24 users in 2 groups, spaced 10 deg apart

Fig. 1. SDP Relaxation + Randomization result for ULA, N = 4,
M = 2 × 12, SINR = 10dB
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24 users in 2 groups, spaced 10 deg apart

Fig. 2. Exact SDP + Spectral Factorization result for ULA, N = 4,
M = 2 × 12, SINR = 10dB
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ABSTRACT

The problem of transmit beamforming to multiple co-channel mul-
ticast groups is considered, from the viewpoint of guaranteing a
prescribed minimum signal-to-interference-plus-noise-ratio (SINR)
at each receiver. The problem is a multicast generalization of the
SINR-constrained multiuser downlink beamforming problem: the
difference is that each transmitted stream is directed to multiple re-
ceivers, each with its own channel. Such generalization is relevant
and timely, e.g., in the context of 802.16 wireless networks. Based
on earlier results for a single multicast group, the joint problem
is easily shown to be NP-hard, a fact that motivates the pursuit of
quasi-optimal computationally efficient solutions. It is shown that
Lagrangian relaxation coupled with a randomization / co-channel
multicast power control loop yields a computationally efficient
high-quality approximate solution. For a significant fraction of
problem instances, the solutions generated this way are exactly
optimal. Carefully designed and extensive simulation results are
presented to support the main findings.

1. DATA MODEL AND PROBLEM STATEMENT

Consider a wireless scenario incorporating a single transmitter with
N antenna elements and M receivers, each with a single antenna.
Let hi denote the N × 1 complex vector that models the propa-
gation loss and phase shift of the frequency-flat quasi-static chan-
nel from each transmit antenna to the receive antenna of user i ∈
{1, . . . ,M}. Let there be a total of 1 ≤ G ≤M multicast groups,
{G1, . . . ,GG}, where Gk contains the indices of receivers partic-
ipating in multicast group k, and k ∈ {1, . . . , G}. Each receiver
listens to a single multicast; thus Gk ∩ Gl = ∅, l �= k, ∪kGk =
{1, . . . ,M}, and, denoting Gk := |Gk|,

∑G
k=1Gk = M .

Let wH
k denote the beamforming weight vector applied to the

N transmitting antenna elements to generate the spatial channel
for transmitting to group k. Then the signal transmitted by the
antenna array is equal to

∑G
k=1 wH

k sk(t), where sk(t) is the tem-
poral information-bearing signal directed to receivers in multicast
group k. Note that the above setup includes the case of broadcast-
ing (a single multicast group, G = 1) [6], as well as the case of
individual information transmission to each receiver (G = M ) by
means of spatial multiplexing (see, e.g., [1]). If each sk(t) is zero-
mean white with unit variance, and the waveforms {sk(t)}G

k=1 are
mutually uncorrelated, then the total power radiated by the trans-
mitting antenna array is equal to

∑G
k=1 ||wk||22.

∗Supported in part by the U.S. ARO under ERO Contract N62558-03-
C-0012, the E.U. under FP6 U-BROAD STREP # 506790

The joint design of transmit beamformers can then be posed
as the problem of minimizing the total radiated power subject to
meeting prescribed SINR constraints ci at each of the M receivers

I :

min
{wk∈CN}G

k=1

G∑
k=1

‖wk‖2
2

s.t. : |wH
k hi|2∑

l �=k |wH
l

hi|2+σ2
i
≥ ci, ∀i ∈ Gk, ∀k ∈ {1, . . . , G}.

Problem I contains the associated broadcasting problem as a spe-
cial case; from this and [6], it immediately follows that

Claim 1 Problem I is NP-hard.

This motivates (cf. [4]) the pursuit of sensible approximate solu-
tions to problem I.

2. RELAXATION

Towards this end, define Qi := hih
H
i and Xk := wkw

H
k , and

note that |wH
k hi|2 = hH

i wkw
H
k hi = trace(hH

i wkw
H
k hi) =

trace(hih
H
i wkw

H
k ) = trace(QiXk). Then, problem I can be

equivalently reformulated as

min
{Xk∈CN×N}G

k=1

G∑
k=1

trace(Xk)

s.t. : trace(QiXk) ≥ ci
∑
l �=k

trace(QiXl) + ciσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},
Xk 
 0, ∀k ∈ {1, . . . , G},

rank(Xk) = 1, ∀k ∈ {1, . . . , G},
where the fact that the terms in the denominator are all non-negative
has also been taken into account. Dropping the rank-one con-
straints, we arrive at the following relaxation of problem I

R :

min
{Xk∈CN×N}G

k=1
, {si∈R}M

i=1

G∑
k=1

trace(Xk)

s.t. : trace(QiXk) − ci
∑
l �=k

trace(QiXl) − si = ciσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},
si ≥ 0, ∀i ∈ {1, . . . ,M},
Xk 
 0, ∀k ∈ {1, . . . , G},

1090-7803-9323-6/05/$20.00 ©2005 IEEE.



where M non-negative real “slack” variables si have been intro-
duced, in order to convert the inequality constraints to equality
constraints, plus non-negativity constraints. Problem R is a Semi-
Definite Program (SDP), expressed in the primal standard form
used by SDP solvers, such as SeDuMi [7]. SeDuMi uses interior
point methods to solve efficiently such SDP problems, at a com-
plexity cost that is at most O((GN2 +M)3.5), and usually much
less.

3. OBTAINING AN APPROXIMATE SOLUTION TO
PROBLEM I

Problem I may not admit a feasible solution (counter-examples
may be easily constructed), but if it does, the aforementioned ap-
proach will yield a solution to problem R. Due to relaxation, this
solution will not, in general, consist of rank-one blocks. In or-
der to obtain a high-quality approximate solution of problem I,
the concept of randomization can be employed to generate can-
didate beamforming vectors in the span of the respective transmit
covariance matrices; see, for example, [6]. The main difference
relative to the simpler broadcast case (G = 1) considered in [6], is
that here we cannot simply “scale up” the candidate beamforming
vectors generated during randomization to satisfy the hard con-
straints of problem I. The reason is that, in contrast to [6], we
herein deal with an interference scenario, and boosting one group’s
beamforming vector also increases interference to nodes in other
groups. Whether it is feasible to satisfy the constraints for a given
set of candidate beamforming vectors is also an issue here. To-
wards resolving this situation, let ak,i := |wH

k hi|2 denote the sig-
nal power received at receiver i from the stream directed towards
users in multicast group k. Let βk := ||wk||2, and pk denote
the power boost factor for multicast group k. Then the following
Multi-Group Power Control (MGPC) problem emerges in con-
verting candidate beamforming vectors to a candidate solution of
problem I

MGPC :

min
{pk∈R}G

k=1

G∑
k=1

βkpk

s.t. :
pkak,i∑

l �=k plal,i+σ2
i
≥ ci,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},
pk ≥ 0, ∀k ∈ {1, . . . , G}.

As in Section 2, taking advantage of the fact that the terms in the
denominator are all non-negative and introducing M non-negative
real “slack” variables si, problem MGPC can be reformulated as

MGPC :

min
{pk∈R}G

k=1, {si∈R}M
i=1

G∑
k=1

βkpk

s.t. : pkak,i − ci
∑
l �=k

plal,i − si = ciσ
2
i ,

∀i ∈ Gk, ∀k ∈ {1, . . . , G},
pk ≥ 0, ∀k ∈ {1, . . . , G}.
si ≥ 0, ∀i ∈ {1, . . . ,M},

Problem MGPC is a Linear Program (LP), since the cost function
and all constraints are linear. SeDuMi can be used again to solve
it efficiently. Note that SeDuMi will also yield an infeasibility cer-
tificate in case the MGPC problem is not solvable for a particular
beamforming configuration, which is nice.

For G = M (independent information transmission to each
receiver), problem R is equivalent to and not a relaxation of I,
see [1], and problem MGPC reduces to the well-known multiuser
downlink power control problem, which can be solved using sim-
pler means (e.g., [3]): matrix inversion, but also iterative descent
algorithms. In this special case, (in)feasibility can be determined
from the spectral radius of a certain “connectivity” matrix. Simi-
lar simplifications for the general instance of MGPC are perhaps
possible, but appear highly non-trivial. At any rate, LP routines
are very efficient.

The overall algorithm for obtaining an approximate solution
to problem I can thus be summarized as follows:

1. Relaxation: Solve problem R, using SDP. Denote the so-
lution {Xk}G

k=1.

2. Randomization / Scaling Loop: For each k, generate a
vector in the span of Xk, using the Gaussian randomization
technique (randC) in [6]. If, for some k, rank(Xk) = 1,
then use the principal component instead. Next, feed the
resulting set of candidate beamforming vectors {wk}G

k=1

into problem MGPC and solve it using LP. If the particu-
lar instance of MGPC is infeasible, discard the proposed
set of candidate beamforming vectors; else, see if it yields
smaller MGPC objective than previously checked candi-
dates. If so, record solution and associated objective value.

The quality of approximate solutions to problem I generated
this way can be checked against the lower bound on transmit power
obtained in solving problem R. This bound can be further moti-
vated from a duality perspective, as in [6]; that is, the aforemen-
tioned relaxation lower bound is in fact the tightest lower bound on
the optimum of problem I attainable via Lagrangian duality [2].
This follows from arguments in [8] (see also the single-group case
in [6]), due to the fact that problem I is a quadratically constrained
quadratic program.

4. SIMULATION RESULTS

The first step of the proposed algorithm consists of a relaxation
of the original QoS beamforming problem I to problem R. The
original problem I may or may not be feasible; if it is, then so
is problem R. If R is infeasible, then so is I. The converse is
generally not true; i.e., if R is feasible, I need not be feasible. In
order to establish feasibility of I in this case, the randomization
- MGPC loop should yield at least one feasible solution. This
is most often the case, as will be verified in the sequel. If the
randomization - MGPC loop fails to return at least one feasible
solution, then the (in)feasibility of I cannot be determined. There
is, therefore, a relatively small proportion of problem instances for
which (in)feasibility of I cannot be decided using the proposed
approach.

It is evident from the above discussion that feasibility is a key
aspect of problem I and its proposed solution via problem R and
the randomization - MGPC loop. Feasibility depends on a num-
ber of factors; namely, the number of transmit antenna elements
N , the number and the populations of the multicast groups, G and
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Gk respectively, the channel characteristics hi, the channel noise
variances σ2

i , and finally the desired receive SINR constraints ci.
Beyond feasibility, there are two key issues of interest. The

first has to do with cases for which the solution to problem R
yields an exact optimum of the original problem I. This happens
when the N × N blocks Xk, k ∈ {1, · · · , G} turn out all being
rank-one. In this case, the associated principal components solve
optimally the original problem I, i.e., in such a case R is not a
relaxation after all.1 The second issue has to do with the quality of
the final approximate solution to problem I in those cases where
a feasible solution can be found using the proposed two-step algo-
rithm. As in [6], a practical figure of merit for the quality of the
final approximate solution (set of beamforming vectors and power
scaling factors) is the ratio of the total transmitted power corre-
sponding to the approximate solution over

∑G
k=1 trace(Xk) - the

lower bound generated from the solution of R.
We consider the standard i.i.d. Rayleigh fading model, i.e., the

elements of the channel vectors hi, ∀i ∈ {1, . . . ,M} are i.i.d.
circularly symmetric complex Gaussian random variables of vari-
ance 1. Tables 1 and 2 summarize the results obtained using the
proposed algorithm for 300 Monte-Carlo runs2 and 1000 Gaussian
randomization samples each. The simulations are repeated for a
variety of choices for N,M (see column 1). The users are con-
sidered to be evenly distributed among the multicast groups, i.e.,
Gk = M/G, ∀k ∈ {1, . . . , G}. For each such configuration, the
problem is solved for increasing values (in dB, column 2) of the
received SINR constraints (same for all users), until problem R
becomes infeasible. The noise variance is set to σ2 = 1 for all
channels. The percentage of the 300 Monte-Carlo runs for which
R is feasible is shown in column 3. Columns 4 and 5 report the
percentage of R feasible solutions which yield exact solutions to
problem I (i.e., when all Xk’s are rank-one), and for which the
ensuing randomization - MGPC loop yields at least one feasible
solution, respectively. Finally, the last column holds the average
value of the ratio of transmitted power corresponding to the final
approximate solution over the lower bound obtained from the SDR
solution.

The R feasibility percentage, and the percentage of cases where
R is equivalent to I, listed in columns 3 and 4, are also plotted in
Figures 1 and 2, versus the requested SINR values, for most of the
scenarios under consideration. It is observed that R is getting more
difficult to solve (for increasing values of the SINR constraints) as
the number G and/or the population Gk of the multicast groups
increases and/or the number N of available transmit antenna ele-
ments decreases. In all configurations considered, the higher the
target SINR, the less likely it is that problem R is feasible, which
is intuitive. Interestingly though, the percentage of exact solutions
to I generated via R also increases with target SINR. It seems as
if rank-one solutions are more likely when operating close to the
infeasibility boundary. Furthermore, if the same number of users
is distributed over more multicast groups (thus, the number Gk of
users per group drops) the attainable common SINR is reduced, as
is perhaps intuitive. On the other hand, when the target SINR is

1It is interesting to find the frequency of occurrence of such an event,
whose benefit is twofold: not only the problem is solved optimally, but
also at smaller complexity, since the randomization step and the repeated
solution of the ensuing MGPC problem is avoided.

23000 Monte-Carlo runs were employed in cases where R was feasible
in less than 10% of the 300 problem instances initially considered. This
was done to improve the estimation accuracy for quantities conditioned on
the feasibility of R.

on the relatively low side, optimum solutions are more frequently
encountered in this case (e.g. see the case of 12 users distributed in
2, 3, and 4 groups for SINR of 6dB), since it is more likely for the
fewer users of any group to be spatially close (the respective prob-
ability is approximately 1/GGk ). Last but not least, the random-
ization - MGPC loop yields a feasible solution with a probability
higher than 90% in most cases where R is feasible; this solution
entails transmission power that is under two times (3 dB from) the
possibly unattainable lower bound, on average.

In some scenarios, R consistently yields an exact solution of
I. That is, the Xk blocks are all consistently rank-one. In this
case, no further randomization is needed - the principal compo-
nents of the extracted blocks are the optimal beamformers. More
on this will be included in [5].

5. CONCLUSIONS

Transmit beamformer design was considered in the context of co-
channel multicast transmission to multiple groups of users. The
problem is a generalization of downlink transmit beamforming of
independent information streams to individual users ([1] and ref-
erences therein); and the single-group multicast beamforming in
[6]. Using [6], the general instance of the problem is easily shown
to be NP-hard. A two-step approach comprising semidefinite re-
laxation and a randomization - multicast power control loop was
proposed and shown to yield high-quality approximate solutions,
plus means of testing feasibility, at manageable complexity cost.
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Fig. 2. R equivalence to I percentages,

Table 1. MC simulation results for QoS Beamforming (Rayleigh)

N/G×Gk SINR R % R ≡ I % MGPC % mean

8/2 × 8 6 100 9.33 99.67 1.57
8/2 × 6 6 100 34.33 100 1.17
8/3 × 4 6 100 76.67 100 1.04
8/4 × 3 6 100 92.67 99.67 1.01
6/2 × 8 6 96.33 13.49 83.74 2.74
6/2 × 6 6 100 37.67 100 1.39
6/2 × 4 6 100 84 99.67 1.02
4/2 × 8 6 4.57 35.77 68.61 1.86
4/2 × 6 6 46.67 48.57 88.57 1.64
4/2 × 4 6 97.67 74.40 100 1.07

8/2 × 8 8 100 13 99.33 1.85
8/2 × 6 8 100 34.67 100 1.16
8/3 × 4 8 100 79.67 100 1.04
8/4 × 3 8 83 95.18 100 1.01
6/2 × 8 8 70.33 21.33 79.62 2.05
6/2 × 6 8 99.67 38.80 99.67 1.26
6/2 × 4 8 100 83.33 100 1.02
4/2 × 6 8 12.67 60.53 92.11 2.24
4/2 × 4 8 90 80.37 100 1.05

Table 2. MC simulation results for QoS Beamforming (Rayleigh)

N/G×Gk SINR R % R ≡ I % MGPC % mean

8/2 × 8 10 100 13 99.67 1.92
8/2 × 6 10 100 37 99.67 1.17
8/3 × 4 10 99 80.81 99.33 1.04
8/4 × 3 10 43.4 97.31 98.92 1.00
6/2 × 8 10 30.67 36.96 84.78 1.64
6/2 × 6 10 98 44.90 96.94 1.46
6/2 × 4 10 100 82.67 100 1.02
4/2 × 6 10 1.97 74.58 93.22 1.39
4/2 × 4 10 74 82.43 99.10 1.04

8/2 × 8 12 97.67 17.41 96.93 1.75
8/2 × 6 12 100 37.33 100 1.15
8/3 × 4 12 91.67 87.64 100 1.04
8/4 × 3 12 11.73 97.44 99.72 1.00
6/2 × 8 12 5.1 49.02 84.31 1.99
6/2 × 6 12 86.33 52.51 98.07 1.37
6/2 × 4 12 100 86 99 1.02
4/2 × 4 12 51.33 86.36 99.35 1.14

8/2 × 8 14 90.33 32.84 95.94 2.11
8/2 × 6 14 100 40.67 100 1.13
8/3 × 4 14 73.33 92.27 100 1.04
8/4 × 3 14 1.93 96.55 100 1.10
6/2 × 6 14 68.67 64.08 97.09 1.21
6/2 × 4 14 100 87 100 1.01
4/2 × 4 14 32.33 90.72 97.94 1.04

8/2 × 8 16 70.67 48.11 95.28 1.63
8/2 × 6 16 100 48 100 1.11
8/3 × 4 16 51.33 92.86 100 1.03
6/2 × 6 16 49 68.71 92.28 1.15
6/2 × 4 16 100 88.33 99.33 1.01
4/2 × 4 16 18.33 90.91 100 1.01

8/2 × 8 18 48.67 57.53 94.52 1.28
8/2 × 6 18 100 55 100 1.10
8/3 × 4 18 31 93.55 100 1.02
6/2 × 6 18 33.67 79.21 98.02 1.13
6/2 × 4 18 100 87.67 99.33 1.01
4/2 × 4 18 8.53 95.70 98.83 1.02

8/2 × 8 20 30 64.44 97.78 1.29
8/2 × 6 20 100 57.33 100 1.08
8/3 × 4 20 19 92.98 98.25 1.01
6/2 × 6 20 17 78.43 96.08 1.15
6/2 × 4 20 100 89 100 1.01
4/2 × 4 20 4.37 96.95 98.47 1.02

8/2 × 8 22 15.67 72.34 95.74 1.29
8/2 × 6 22 100 61 100 1.08
8/3 × 4 22 6.93 95.19 99.04 1.02
6/2 × 6 22 10 80 96.67 1.37
6/2 × 4 22 100 91 100 1.01
4/2 × 4 22 1.83 98.18 98.18 1.00

8/2 × 8 24 6.33 78.95 94.74 1.39
8/2 × 6 24 100 64 100 1.07
8/3 × 4 24 2.76 96.39 98.80 1.02
6/2 × 6 24 4.37 90.84 96.95 1.12
6/2 × 4 24 100 91 98.33 1.01

8/2 × 8 26 2 83.33 83.33 1.00
8/2 × 6 26 99 65.66 99.63 1.07
8/3 × 4 26 1.37 95.12 100 1.01
6/2 × 6 26 1.9 96.49 100 1.03
6/2 × 4 26 100 91.33 99 1.01

8/2 × 6 28 100 65.67 98.67 1.07
6/2 × 4 28 98.33 91.28 99.33 1.01

8/2 × 6 30 98.67 66.55 99.32 1.07
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ABSTRACT

Given a set of pairwise distance estimates between nodes, it is of-
ten of interest to generate a map of node locations. This is an old
problem that has attracted renewed interest in the signal process-
ing community, due to the recent emergence of wireless sensor
networks and ad-hoc networks. Sensor maps are useful for esti-
mating the spatial distribution of measured phenomena, as well as
for routing purposes. Both centralized and decentralized solutions
have been developed, along with ways to cope with missing data,
accounting for the reliability of individual measurements, etc. We
revisit the basic version of the problem, and propose a two-stage
algorithm that combines algebraic initialization and gradient de-
scent. In particular, we borrow an algebraic solution from the data-
base literature and adapt it to the sensor network context, using
a specific choice of anchor/pivot nodes. The resulting estimates
are fed to a gradient descent iteration. The overall algorithm of-
fers better performance at lower complexity than existing central-
ized full-connectivity solutions. Also, its performance is relatively
close to the corresponding Cramér-Rao bound, especially for small
values of range error variance.

1. INTRODUCTION

The problem of node localization from pairwise distance estimates
has recently attracted renewed interest in the signal processing and
communications literature (e.g., [1, 3, 4]), owing to the recent in-
terest in wireless sensor networks and ad-hoc networks. Given a
matrix of pairwise distances (usually estimated using received sig-
nal strength measurements and a path loss model), the localization
problem asks to determine the relative node locations that gener-
ate these distances. In other words, one seeks a map of sensor
locations with a given (approximate) distance structure. This is
a classic problem originating in psychometrics [5, 6], known as
Multi-Dimensional Scaling (MDS).

There are many MDS flavors and variants; perhaps the single
most important version is metric MDS. The classic approach to
solving MDS is based on computing the principal components of
a double-centered version of the distance matrix. This works well
(albeit not optimally, due to the double centering), but its complex-
ity is cubic in the number of nodes, and thus does not scale well
with network size. A popular alternative to principal component
analysis (PCA) is the use of gradient descent or other numerical
optimization tools that aim to optimize a stress function. The stress

† Contact Author. E-mail: nikos@telecom.tuc.gr, Fax: +30-28210-
37542. Supported in part by ERO/ARO Contract N62558-03-C-0012.

function measures the error between the given distances and those
reproduced by a given configuration of points. The drawback of
gradient descent and related approaches is that they require accu-
rate initialization.

We propose a two-stage MDS algorithm that employs an al-
gebraic initialization procedure followed by gradient descent. The
algebraic initialization is based on the Fastmap [2] algorithm, bor-
rowed from the database literature. Fastmap is a linear-complexity
mapping tool, which is, however, sensitive to range measurement
errors. Due to the fact that distances are invariant to coordinate
frame transformations (rotation, reflection, shift), there is a need
to employ three so-called anchor nodes, whose position is ac-
curately known (e.g., via GPS) in order to fix a desired coordi-
nate frame. Unfortunately, Fastmap is very sensitive to coordi-
nate alignment, because the estimated position of every node (and
thus anchor nodes as well) is only based on distances to selected
pivot nodes - thus there is no averaging. In order to mitigate this
problem, we advocate a particular choice of anchor/pivot nodes,
placed at the outer edges of the network. This placement bypasses
the need for alignment and thus alignment errors, thereby pro-
viding a high-quality initialization to the gradient descent. The
overall algorithm affords better localization accuracy than PCA-
based MDS, at substantially lower complexity cost (quadratic in
the number of nodes).

The rest of this paper is structured as follows. In Section 2 we
explain in detail the PCA-based MDS algorithm, and its alterna-
tive implementations. The Fastmap algorithm is briefly reviewed
in Section 3. In Section 4 we describe the proposed Fastmap-MDS
algorithm. Simulation results regarding the performance of the
above three algorithms, and the Cramer-Rao Lower Bound for the
particular localization problem, are shown in Section 5 and con-
clusions are drawn in section 6.

2. MULTIDIMENSIONAL SCALING

Multidimensional Scaling (MDS) [5, 6],[4] is a method used to
depict the spatial structure of distance-like data using the dissimi-
larity measure among them. It has its origins in psychometrics and
psychophysics. MDS starts by presuming that the dissimilarities
of each pair of objects stem from data points in an m-dimensional
space. In most cases the space in which the data is placed is 2 or
3-dimensional. The algorithm aims to find a geometric represen-
tation of the data, such that the distances between data points fit as
well as possible to the given dissimilarity information.

We denote the dissimilarity measure (the estimated distances
in our case), between objects i and j as dij . The set of the dissim-

640-7803-9323-6/05/$20.00 ©2005 IEEE.



ilarities forms the matrix D. We also let �dij denote the Euclid-
ean distance between two points Xi = (xi1, xi2, ..., xim) and
Xj = (xj1, xj2, ..., xjm), i.e.

�dij =

���� m�
k=1

(xik − xjk)2, (1)

where m is usually 2 or 3.
In classical metric MDS, we estimate the node coordinates X

by computing the m principal components of a double-centered
and element-wise squared version of the matrix D, denoted by B:

B = −1

2
JPJ, (2)

where P is the matrix of squared distance measures, and J is the
centering operator, ie

J = I − eeT /N, (3)

with N denoting the number of objects (sensor nodes). For an
N ×N matrix D and for m dimensions, it can be shown that

−1

2
(d2

ij
− 1

N

N�
j=1

d2
ij− 1

N

N�
i=1

d2
ij+

1

N2

N�
j=1

N�
i=1

d2
ij) =

m�
k=1

xikxjk,

(4)
thus the estimated node coordinates are given by the m princi-
pal eigenvectors of the matrix B, scaled by the square roots of
the corresponding eigenvalues. With Ur denoting the m princi-
pal eigenvectors and Vr diagonal containing the corresponding
eigenvalues, Br = UrVrUr is an optimal least squares approxi-
mation of B, and Xr = UrV

1/2
r is an approximation of the node

coordinates in m-dimensional space, up to a common coordinate
rotation, reflection, and shift. An alignment procedure is neces-
sary to transform the estimated node locations to a desired frame
of reference.

Direct minimization of a suitable stress function is an alterna-
tive to PCA-based MDS [5]. A common stress function is

stress2 =
�
i,j

(�dij − dij)
2. (5)

Minimization starts with an initial guess of the node positions (of-
ten random), followed by gradient descent iterations. Initialization
matters a lot in this context, because the stress function is multi-
modal. Furthermore, the number of iterations required for conver-
gence depends heavily on the quality of the initialization.

3. FASTMAP

The basic element of Fastmap [2] is the projection of the objects on
a properly selected line. This is achieved by selecting two objects
Oa, Ob, called pivots, and projecting all other objects on the line
that passes through them. A pair of pivots is chosen for each of
the m dimensions. The coordinates, (i.e. projections on the pivot
line) of the objects can be found by employing the cosine law [2].
Thus, the first coordinate for object Oi is given by:

xi =
d2

ai + d2
ab − d2

bi

2dab
, (6)

where dij is the dissimilarity measure between nodes i and j and
a, b are the pivot objects. After computing these coordinates for

each object Oi, we consider a hyperplane which is orthogonal to
the pivot line. We then project the objects on this hyperplane, and
repeat the process, this time using

d́2
ij = d2

ij − (xi − xj)
2, i, j = 1, ..., N. (7)

A heuristic method is proposed in [2] for choosing the pivots as far
as possible from one another.

In database applications there is no “natural” or preferred co-
ordinate frame of reference, thus the final alignment step is not
used, and anchors are not needed. In the context of sensor net-
works, however, obtaining absolute position estimates is impor-
tant. Unfortunately, Fastmap is very sensitive to coordinate align-
ment, because the estimated position of every node (and thus an-
chor nodes as well) is only based on distances to the chosen pivot
nodes - thus there is no averaging. In order to mitigate this prob-
lem, we advocate a particular choice of anchor/pivot nodes, placed
at the outer edges of the network. In particular, we assume that the
sensor nodes are spread over a square, and place the anchor nodes,
which will also serve as pivots, at three vertices (see Fig. 1). This
placement bypasses the need for alignment and thus alignment er-
rors, thereby providing a high-quality initialization to the gradient
descent. Anchors #1 and #2 also serve as pivots for determining
the coordinates in the first dimension, while anchors #2 and #3
double as pivots for the second dimension.

4. TWO-STAGE FASTMAP-MDS APPROACH

Fastmap is a fast algebraic method that is rather sensitive to mea-
surement errors, particularly so in the final alignment step. In
our context, this sensitivity can be mitigated by proper use of an-
chor/pivot nodes. The resulting estimates can be used as initial-
ization for gradient descent. Each step of gradient descent costs
O(N2). Assuming good-enough initialization, only a few gradi-
ent descent steps will be needed. This suggests that a substantial
complexity reduction relative to PCA is possible. Interestingly,
estimation accuracy can be improved as well, as we will see.

The basic steps of the two-stage algorithm are shown in Table
1. Denoting by (xi, yi) the estimated position of node i, the partial

•

•

•

•

•

• •
©

Anchor/pivot #1
©

Anchor/pivot #2

©
Anchor/pivot #3

Sensor nodes

Fig. 1. Anchor-Pivot node placement for using Fastmap in sensor
network localization

65



Table 1. The 2-D Hybrid Fastmap-MDS Algorithm
Input: D

1. Run Fastmap using as pivot the anchor nodes, which are
placed on the three vertices of the square distribution area.
Let X be the vector which contains all the estimated coor-
dinates, which are returned by Fastmap.

2. Determine p, λ

3. For i = 1 to p
begin

• evaluate ∇stress at the point X

• X = X − λ∇stress
end

4. Output: X

derivative of the stress function in (5) is given by

∂stress

∂xi
=
�
j �=i

(
�

(xi − xj)2 + (yi − yj)2 − dij)(xi − xj)�
(xi − xj)2 + (yi − yj)2

.

(8)
with a similar expression for the partial derivative with respect to
yi. For simplicity, but also to bound complexity, a fixed number
p = 10 of gradient descent steps is used in our simulations.

5. RESULTS

We compare the three algorithms described above, in the context of
node localization in sensor networks. We consider that the network
has full connectivity, that is, we have distance estimates for every
pair of nodes. The distance estimates are assumed to contain an
error which is proportional to the true distance between the nodes.
Thus, we model the distance estimates to be

dij = pij + pijN (0, er), (9)

where pij is the true distance between nodes i and j and er is the
measurement range error variance. Network nodes are considered
to be uniformly distributed in a square with area equal to 1, i.e.
the x and y coordinates of the sensor nodes are assumed uniformly
distributed in [0, 1]. We employ the alignment procedure described
in [3], in order to find the actual coordinates, and adopt root mean
squared error as our estimation performance metric

RMSE :=

�N
i=1

�
(xri − xei)2 + (yri − yei)2

N
, (10)

where xei, yei are the estimated coordinates, and xri, yri are the
actual sensors coordinates. The baseline MDS algorithm is based
on PCA. The complexities of the three algorithms are summarized
in Table 2.

In Fig. 2 we show the RMSE performance of the three meth-
ods for a sensor network with 80 sensors, as a function of er .
The corresponding Cramér-Rao Bound (CRB) is also plotted as
a benchmark1. The parameter λ of the hybrid algorithm is set to

1CRB derivations are omitted due to space considerations, but will be
included in the journal version.

Table 2. Computational complexities
Algorithm Complexity

Fastmap O(mN)
Hybrid Fastmap-SVD O(pmN2), p << N

MDS with SVD O(N3)

0.01 for this experiment. We observe that Fastmap exhibits poor
performance, while PCA-based MDS and the proposed two-stage
algorithms have better performance, as expected. Interestingly, the
proposed algorithm is not only less complex, but also more accu-
rate than PCA-MDS. This is partially attributed to the fact that
PCA-MDS uses double centering, which colors the noise, whereas
the proposed algorithm directly minimizes the stress function. We
also observe that the Hybrid algorithm is relatively close to the
CRB, especially for low range error variance.

In Fig. 3 we show corresponding performance results and the
CRB for a network with 200 nodes. The λ parameter is set to
0.005. The estimation accuracies of both PCA-MDS and the pro-
posed two-stage algorithm improve, as expected, relative to the
previous case. Fastmap does not benefit, due to the lack of (im-
plicit or explicit) averaging.

We now compare the three algorithms over an additive white
noise measurement model, i.e., the measurements have the follow-
ing form

dij = pij + N (0, er), (11)

where the variance of the measurement error is independent of the
distance between the two nodes. The results are shown in Fig. 4
for the case of 80 sensor nodes, and in Fig. 5 for the case of 200
nodes. We observe again that the Hybrid algorithm exhibits better
performance than the other two.

6. CONCLUSIONS

We have proposed a two-stage hybrid localization algorithm that
offers a better accuracy-complexity trade-off than existing alterna-
tives in the context of sensor networks. The new algorithm em-
ploys Fastmap, coupled with judicious selection of anchor nodes
that double as pivots, to generate a computationally cheap yet suf-
ficiently accurate initialization for gradient descent. Our simula-
tions indicate that the overall algorithm outperforms PCA-based
MDS both in terms of complexity and in terms of estimation accu-
racy. Future work will include pertinent modifications of this idea
that are well-suited for distributed computation and missing data.
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Fig. 2. RMSE performance vs measurement range error variance.
N=80, all pairwise distance estimates collected. Measurement er-
ror proportional to the actual distance. 100 Monte Carlo runs.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SVD−MDS

Fastmap with fixed pivot

Hybrid Fastmap−MDS

CRLB

Fig. 3. RMSE performance vs measurement range error vari-
ance. N=200 sensor nodes, all pairwise distance estimates col-
lected. Measurement error proportional to the actual distance. 100
Monte Carlo runs.
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Fig. 4. RMSE performance vs measurement range error variance.
N=80, additive noise measurement model, all pairwise distance
estimates collected. 100 Monte Carlo runs.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SVD−MDS

Fastmap with fixed pivot

Hybrid Fastmap−MDS

Fig. 5. RMSE performance vs measurement range error variance.
N=200 sensor nodes, all pairwise distance estimates collected. Ad-
ditive noise measurement model. 100 Monte Carlo runs.
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ABSTRACT 

We consider the problem of transmit downlink beamforming for 
wirclcss transmission i n  the context ofcertain broadcasting or mul- 
ticasting applications wherein Channel State Information (CS1) is 
available at the transmittcr, and a common message is to be trans- 
mitted to the users. Unlike the usual “blind“ isotropic braadcast- 
ing sccnario, the availability of CSI allows transmit optimization. 
We adopt a minimum transmission power criterion. subject to pre- 
scribed minimum received Signal-to-Noise Ratio (SNR) at each of 
the intended receivers. We also consider a related max-min SNR 
“fair” problem formulation subject to a transmit power constraint. 
The basic problem is non-convex and thus difficult to solve; how- 
ever, we show that a suitable reformulation allows the application 
of semidcfinik relaxation (SDR) techniques. SDR yields a (gen- 
erally approximate) solution, but in many cases our solution is op- 
timal, and in most c a m  it is within 3-4 dB from the optimal so- 
lution, which is oftcn good enough in our intcnded applications. 
While the focus of the paper is on a wireless communication sce- 
nario, we also discuss related problems in downstream precoding 
for hroadcasting in digital Subscriber line systems. 

,_ 

1. INTRODUCTION 

Consider a transmittcr that utilizes an antenna array to broadcast 
(common) information to multiple radio receivers (with a sin- 
gle antenna) within a ccrtain service area. The traditional ap- 
proach to broadcasting is to radiate transmission power isotropi- 
cally, or with a tixcd directional pattern. While such an approach 
has the advantage that i t  is channel independent, it may incur a 
substantial performance penalty. Furthermore, in modern digital 
video/audio/data hroadcasting and multicasting applications, it is 
oftcn plausible to assume that the transmitter can acquire chan- 
nel state information (CSI) for all its intcnded receivers. Tbis 
is relatively straightforward in fixed wireless systems and Time- 
Division-Duplex (TDD) systems, but it can aIso be accomplished 
in more general scenarios through the use of beacon signals, pe- 
riodically transmitted from the broadcasting statinn (and typically 
embedded in the transmission). The receiving radios can then feed 
back their CSI through a feedback channel. For the moment, we 
shall assume that all channels are perfectly known at the trans- 
mitter site. Most of these assumptions can be alleviated, up to a 
certain extent, at the expense of graceful performance degradation 
relative to the idealized conditions postulated PbOVS. 

‘Suppofled in part by the U.S. ARO under ER0 Contract N625S8-03- 
C-0012. and the EU under U-BROAD STREP # 506790 
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Hamilton, ON L8S 4K1, Canada 
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The key idea is this: If the transmitter has CSI for all the ra- 
dios that it intends to broadcast to, thcn i t  makes sense to attempt to 
minimize total transmission power (and thus leakage to neighbor- 
ing co-channel transmissions). subject to meeting constraints on 
the received Signal-to-Noise Ratio (SNK) for each individual in- 
tended receiver. Note that this is a Quality of Service (QoS) guar- 
antee that directly translates to a guaranteed minimum information 
rate foreach ofthe receivers. Alsonnte that different receivers may 
have different SNR requirements, due to differing traffic require- 
ments, and different noise and interference conditions. 

Another application of thc methodology developed herein can 
be found in downstream multicast transmission for multi-carrier 
and single-carrier Digital Subscriber Line (DSL) systems. In this 
context, (linear) precodirig of multiple DSL loops in the same 
binder that wish to subscribe to a common service (e.g., news feed, 
video-conference, or movie multicast) can be employed to improve 
quality of service andlor reduce far-end crosstalk (FEXT) interfer- 
ence to other loops in the binder. In cases wherein the Customer- 
Premise Equipment (CYE) reccivcrs are not physically co-located 
(as i n  residential service), or cannot he coordinated (as in legacy 
CPEsyslems), muItiuser dccoding of thc downstream transmission 
is not feasiblc. while transmit prccoding is viable, The most impor- 
tant difference between DSL and the wireless multicast scenario 
considered so far is that USL channels are diagonally-dominant. 
That said, exploitation of the crosstalk coupling to reducc FEXT 
lcvels to other loops in the binder offers the potential for cnnsider- 
able gains in the management of mutual interference. 

It i s  .interesting to note that. as of today. internet multicast- 
ing (using the internet protocol’s Multicast Backbone - Mflone) is 
pcrformed 81 the network layer, i.e., via packet-lcvel Booding or 
spanning-tree access of thc participant nodes and any intermediate 
nodes needed to access the participants. Instead, what we advocate 
herein is judicious physical luyer ntulricustinng, that is enabled by 
i) thc availability of multiple transmitting elements; ii) exploiting 
opportunities for joint beamforming/precoding; and iii) the avail- 
ability ofCS1 at the transmitting node or one of its proxies. This is 
a cross-layer optimization approach that exploits information that 
is made available at the physical Iaycr to reduce relay retransmis- 
sions at the network layer. This provides the potential for congcs- 
tion relief and considerable Quality of Service (QoS) gains. 

Notation: We use lowercase boldface letters to denote column 
vectors, and uppercase bold letters to denote matrices. (.)T de- 
notes transpose. while ( . )H  denotes Hermitian (conjugate) trans- 
pose. Re ( Im)  extracts the real (respectively, imaginary) part of 
its argument. 
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2. DATA MODEL AND PROBLEM STATEMENT 3. RELAXATION 

We assume that each radio receiver employs a single receive an- 
tenna (and thus a single receiver front-end and downconversion 
chain), as is appropriate for simplicity and cost considerations i n  
broadcasting applications. Let hi denote the N x 1 complex vec- 
tor modeling propagation loss and phase shift from each of the 
N transmitting antenna elements to the receiving antenna of user 
i f (1,. . . , M } .  This model assumes that the channels between 
the transmitter and the receivers are flat in frequency over the band- 
width of the transmitted signal, but. as we will demonstrate be- 
low. the principles of our design can be extended to the frequency- 
selective case in a straightforward manner. 

If we let w H  denote the weight vector applied to the N 
transmitting antenna dements, then the problem of interest is  
to minimize the transmitted power (of a white data sequence), 
subject to the received signal power of user i being larger than a 
threshold c,. This problem can be written as 

where w E CN. .This is a quadratically cnnstraincd quadratic 
programming problem, but unfortunately the constraints are not 
convex. 

2.1. Review of Pertinent Prior Art 

The above problem is rcminiscent of  somc closely-related prob- 
lems. For hi = 1, the optimum w is a matched filter. When the 
channel vectors span a ball or ellipsoid about a "nominal" channel 
vector (a model that implies a continuum of intended rcceivers). 
the problem can be solved exactly using sccond-order cone pro- 
gramming. as shown in [SI. The key obscrvation is that one can 
convert the infinitely-many non-convex constraints over the ball 
into a single convex constraint, by taking advantage of rotational 
freedom and the Cauchy-Schwartz incquality to explicitly con- 
struct the worst-case channel vector within the said ball. Unfortu- 
nately. we are not aware ofa  corresponding conversion for finitely- 
many channel vectors (intended receivers). 

Another closely-related work is that i n  [ I ]  (and references 
therein), which considers the problem of multiuscr transmit beam- 
forming for the cellular d o y l i n k .  The key difference between [ I ]  
and our formulation is that the authors of [ I ]  consider the trans- 
mission of independent information to each ofthe downlink users. 
whereas we focus on the broadcast of common information. The 
mathematical formulations of these problems are not equivalent. 
A simple way to see this is to note that in the generic case of our 
formulation most of the SNR constraints will be inactive at the 
optimum (i.e.. most of the constraints will be over-satisfied). Con- 
sider, e.g., the case of two closely-located receivers with different 
SNR requirements: one of the two associated constraints will be 
over-satisfied at the optimum. On the other hand, it is proven in [l] 
that. in the celluIar downlink problem, the constraints are always 
met with equality at thc optimum. The important common denom- 
inator of our work and [ 11 is  the use of semidefinite programming 
tools. 

Towards solving our problem, we first recast it as follows: 

min trace(wwH j 
W 

suhject to : trace(wwHQi) 2 ci, i E { I , . .  I , &I}, 
where we have used the fact that bHwwHhi = 
trace(hFwwHhi) = trace(wwHhihF)). and Qi := h,hF. 
Now consider the following reformulation of the problem: 

min t race(X)  
. XEC"XN 

subject to : trace(XQi)  2 ci, i f {I,... , M } ,  

"(X) = 1, 
where now X is an N x N complex matrix, and the inequality 
X 2 0 means that the matrix X is symmetric positive semidefi- 
nite. Note that, in the above equiwlerr! formulation of our prob- 
lem. the cost function is linear i n  X; the trace constraints are linear 
inequalities i n  X, and the set of symmetric positive semidefinite 
matrices is convex; however the rank constraint on X is not con- 
vex. The important observation is that the above problem is in 
a form suitable for semidefinite relaxation (SDK) (e.g., see 141). 
That is, by dropping the rank-one constraint, onc obtains the re- 
laxed problem 

subject to  : trace(XQi) 2 c i ,  i E {I, . . . , At) , and X 2 0, 
which is a semidefinite programming problem (SDP), albeit not 
yet in standard form. In order to put it in a standard form, we add 
h.1 non-negative "slack" variables si, one for each trace constraint. 
In this way, we obtain the following formulatian 

I subject to: uec(QT)"vec(X) - si = ci, i E ( 1 , .  . . , M }  

s; 2 0, i E (1,. . . ] M }  , and x 2 0 

which is now expressed i n  a standard form used by SDP solvers, 
such as SeDuMi [6 ] .  

SUP problems can be efficiently solved using interior point 
methods, In particular, the complcxity of solving the above pro- 
gram is at most O ( ( M  + N)"'). and i t  is usually much less. Se- 
DuMi [6] is a MATLAB implementation of modern interior point 
methods for SDP that is particularly efficient for the moderate- 
sized problems that are encountered in our context. Typical run 
times for realistic choices of N and M are about 1/10 sec, on a 
typical desktop computer. 

4, ALGORITHM 

Due to the relaxation. the matrix X,,t obtained through the SDP 
will not be rank-one in general. If i t  is. then its phncipal compo- 
nent will be the optimal solution to the original problem. If not. 
then the trace of Xopt is a lower bound on the power needed to 
satisfy the constraints. This is evident from the fact that we have 
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removed one of the original problem’s constraints. Researchers 
in optimization have recently developed ways of generating good 
solutions to the original problem from the solution to the relaxed 
problem, X,,t [4, 9, 7, 51. This process is based on rundutniza- 
lion: using Xopt to generate a set of candidate weight vectors, 
{wI). from which the “best” solution will be selected. We con- 
sider two methods for generating the we’s, both of which have 
been designed so that their computational cost is negligible com- 
pared to that of computing zpt. (For consistency, the princi- 
pal component is also included i n  the set of candidates.) In the 
first method (randA), we calculate the eigen-decomposition of 
Xopt = UEUH and choose we such that wt = 1JE1/2e(, 
where er is uniformly distributed on the unit spbere. In the sec- 
ond method (randB) ins ired by Tseng [7], we choose wc such 
that [wc], = dLp [XOpt]i, e3°c,z, where the &,i are independent 
and uniformly distributed on [0, 2 ~ ) .  In both cases, (lwtll: = 
tracc(XoPt), and hence when rank(Xoyt) > 1, at least one of 
the constraints Iwf hiI2 > ci will be violated. However, a feasi- 
ble weight vector c m  be found by simply scaling wl so that all the 
constraints are satisfied. The “best” of these randomly generated 
weight vectors i3 the one that requires the smallest scaling. Thc 
overall approach is summarized i n  Table I .  We point out that we 
havc not yet been able to obhin theoretical a priori bounds on the 
extent of the sub-optimality of solutions generated in this way, but 

’ our simulation results are quite encouraging. 

5. MAX-MEN FAIR REAMFORMING 

We now switch to an attemative problcm that is also of interest. 
We consider 

I I 

I t  is e ~ s y  to sec that the constraint should be mct with equality at an 
optimum, for otherwise w could be scaled up, thereby improving 
the objective and contradicting optimality. Thus we can focus on 
the equality-constrained prohlem. With a scaling of the optimiza- 
tion variable w = ow, the equality-conqtrained problem c m  be 
written as 

It is clear tho1 the solution to this problem simply scales with P :  
the solution scalcs up with e, while the optimum value scales 
up with P .  We can therefore restrict our attention to the problem 
(dropping the tilde for brevity): 

M 
Inax, min (IwHhi12}i,l 

subjeci ro: ilwlii = 1 

Some discussion is due at this point on the relationship be- 
tween the two problem t’ormulations: thc original QoS formula- 
tion that seeks to minimize the total transmit power subject to pre- 
scribed lower bounds. G *  on the received signal powers: and the 
max-min “fair” formulation seeks to maximize the received sig- 
nal power of the weakest user subject to an overall transmit power 

constraint. Suppose that all cj’s  are equal to e, and the QoS formu- 
lation yields a beamformer w, and associated minimum transmit 
power Pq. Then we can scale the solution of the max-min fair 
beamformer to power Pp7 and this scaled max-min fair solution, 
denoted wj, will be an optimal solution to 

subject tu: IlwIli = Pq 

As a result, since wq already attains Iwfhi12 2 e, V i ,  it follows 
that Iwyhi12 2 c.  Vi. Hence wf also satisfies the constraints of 
the QoS formulation, and at the same power as w,. It follows that 
wj is equivalent tow,. This shows that 

Claim 1 The QaS probletn furmuiarion and the tilux-min fair 
prubleni formulatioil ure equivalent iii the case rkai all the c, ’s 
are equal. 

When the ~ ‘ s  are different, however, the two problem formula- 
tions generally yield differcnt beamformcrs. Claim 1 implies an 
indircct way of solving the max-min fair problem: 

Corollary 1 One way to sohe the n i a x - r h  fuir problern is tu 
solve tlzr QuS problarz will1 c, = 1, V i  E { 1,  . . . , M } ,  t h n  scale 
the resulring solutiori io the desired power P. 

6. THE CASE OF FREQUENCY-SELECTIVE 
MULTI PATH 

Although we havc focused our attention so far on frequency- 
flat fading channels, the situation is quite similar for frequency- 
sclective (intersymbol-interfcruncc) channels. Let hf” dcnate the 
e-th N x 1 vector tnpof the baseband-equivalent discrete-time im- 
pulse response of the multipath channel bctween the transmitter 
antenna array and thc (single) receive antenna of receiver-i. As- 
sume that delay spread is limited to L non-zero vector channel 
taps. Define the channel matrix for the i-th receiver as 

Beamforming the transmit array with a fixed ([inwinvariant) 
w H  yields a scalar equivalent channel from the viewpoint of the 
i-th receiver, whose scalar taps are given by 

or, i n  vector form, 
hT = wHHi. 

Now, if a Viterbi equalizer is used for sequence estimation at the 
receiver, then the parameter that determines performance is [3]: 

tmce(wwHH,Hy) = t race (wwHQi) ,  

where Q, := HiEl:, Therefore, both the QoS and max-min 
“fair” problems naturally extend to the frequency-selective case. 
While Qi is generally of higher rank than in the flat-fading case. 
the principles of relaxation can be applied in an analogous manner 
lo generate an approximation of the optimal w. 
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7. INSIGHTS AFFORDED VIA DUALITY 

Let us return to our original problem: 

min\\wII: 

We can convert the problem to real-valued form; this yields a 
2N x I vector of real variables, x := [ R ~ { w } ~  I l r l { ~ } ~ ]  , 
and the Q i ‘ s  are now 2N x 2N symmetric matrices of rank 2: 
Qi := gigT + g,gT. where g. :- Re {h,}T In& {hi}T] , and 

gc := [Im {hi}T - R e  {h,IT] . Then our original problem 
can be written as: 

T 

T - 1  T 

I Inin xTx 

I subject to: x T Q ; x  2 ci, i E (1, . . . , A [ }  . 

It can he shown that the (Lagrange) dual of problem P is a 
Semi-Definite Program (SDP). The dual problem is interesting, be- 
cause i t  generates a lower bound on the minimum objective value 
of the original problem [Z]. The dual problem is convex by virtue 
of its definition. This means that we can solve the dual problem 
and thus obtain the tightest bound obtainable via duality. This 
duality-derived bound can he compered to the SDR bound we used 
earlier. Let D(-) (a(.)) denote the dual (respectively, minimum) of 
a certain minimization problem, and let R ( P )  denote the semidef- 
inite relaxation of F, obtained by dropping the associatcd rank-one 
constraint, It  can be shown that 

Claim 2 D(D(P) )  = R ( F ) ;  and /3 (R(P) )  = B(D(P) ) .  That 
is, setnide/inile reluxaiioii yields the clirality bourrd for P, and the 
corresponding gup is equal fu rhe hati& gap. 

Claim 2 along with claim 1 directly yields the following corollary: 

Corollary 2 Ler 3 denote the mar-nriii fair problem forinidation. 
Ths .  

seinicleJirlite relaxutiori yields the duatify bound for 3, and the cor- 
respondiiig gap is e q i d  io rhe duu1it.v gup. 

Tlrrrz D ( D ( F ) )  = R(7);  and P(R(%)) = f i (D(F) ) .  

8. SIMULATION RESULTS 

Simulation results are presented in Fig. I and Tables 2. 3, and 4. 
Table 2 summarizes the results obtained using the algorithm in 

Table 1 with the randA option for randomization. Table 3 summa- 
rizes the results obtained using the algorithm in Table I and both 
randAbnd randB randomizations. In this case, the best of the two 
solutions (in the sense of minimizing the power boost relative to 
the lower bound provided by SDR) is selected i n  cach Monte-Carlo 
(MC) run. The captions are otherwise self-containcd. Note that, 
in many cases, our solutions are within 3-4 dB from the (generally 
conservative) lower bound on transmit power provided by SDR, 
and thus are guaranteed to be at most 3-4 dB away from optimal; 
this is often good enough from an engineering perspective. In sev- 
eral cases the sohtions are essentially optimal. This is illustrated 

i n  Figure 1, which shows lhe optimized transmit beam pattern for 
a particular far-held multicasting scenario using a Uniform Lin- 
ear antenna Array (ULA); the details of the simulation setup are 
included in the figure captions for ease of reference. 

Table 4 summarizes our simulation results for max-min fair 
beamformjng. Table 4 presents averages for the upper bound on 
minimum SNR (the optimum attained by SDP without regard to 
the rank-one constraint), the SDR-attained minimum SNR (after 
randomization), and the minimum SNR for the case of no beam- 
forming. For the latter, we have used w = & 1 ~ ~  1, which fixes 
transmit power to 1. The number ofpost-SDR randomizations was 
set to 30NM. (This time a function of N ,  M . )  Lt is satisfying 
to note that the SDR solution attains a significant fraction of the 
(possibly unattainable) upper bound. Furthermore. SDR provides 
substantial gains over not beamforming at all. 

We observe from Tables 2- 4, that as N andor hf increase, 
the quality of the solution generated by the semidefinite relaxation 
degrades a little. The reasons for this degradation are under inves- 
tigation. but po5sihle causes include implementation issucs. such 
as the numbcr of randomizations and the nalure of the nndomiza- 
tion strategy, and more fundamental issues, such as the potential 
for a mild degradation of the approximation quality of the method 
as the problem size grows. ([n a related. but distinct. problem the 
quality of the SDR approximation degrades logarithmically in the 
problem si7c [SI.) 

9. CONCI~USIONS 

We have taken a new look at the broadcastinglmulticasting prob- 
lem when channel state information is available at the transmitter. 
We have formulatcd the problem of minimizing the transmit power 
under multiple SNR constraints, and we have shown how its solu- 
tion can hc often well-approximated using semidefinite relaxation 
tools. We have also considercd a max-min Fair problem formula- 
tion. For both formulations. semidefinite relaxation yields a bound 
on the deg-ee of suboptimality that is actually equal to the opti- 
mum Lagrange dual bound. This justifies, to a certain extent. the 
approximation introduced by relaxation. Still, i t  would be nice 
to analyze the duality gap for the problem at hand, for this would 
yield apriorihounds on the degree of suboptimality introduced by 
relaxation, as opposed to the aposreriori bound that we now have 
by virtue of CIaim 2. For the time being. our sitnufalion results 
indicate that the degree of suboptimalify is often within 3-4 dB. on 
average. which i s  acceptable i n  our intended applications. 

There are many interesting refinements and extensions to this 
work. These include potentially better randomization strategies. 
robustness issues. and extensions to multiple co-channel multicas- 
ting groups. These are the subjects ofon-going work, and will be 
reported elsewhere. 
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N / h f  upperbound SDR n o B M F  
4f 8 1 .os 0.92 0.12 
4/16 0.73 0.48 0.06 
8/16 1.43 0.72 0.06 
8/32 1.07 0.37 0.03 

I 

Table 1. Broadcast Reamforming via SUR: Algorithm 

Solve the relaxed problem: 
A suitable MATLAB interface for SeDuMi is as follows: 
% H is N by M, hoIding thc channel vectors; 
% constraints i s  M by I .  holding the Rx power constraints 
vecQs = [I; 
for i=l:M, 
Qi = H(:,i):kH(:,i)’; 
vecQs = [vecQs vec(Qi.’)]; 
end 
A=I-eye( M). vecQs.’] ; 
bzconstrain ts; 
o=[zeros(M. 1 ): vec(eyc(N))]: 
K.I=M; K.s=N; K.scomplcx=I; 

X,,~=mat(zn,t(M+l :cod)); 
Randomization: 

Use randA, or rands, as described in Section 4. 
11 i s  often prekrable to run both and pick thc best result. 

yoyl,info]=sedumi( A,b.c,K); 

. 

Table 2. MC simulation results: mean and standard dcviation of 
upper bound on power boost. H is circularly symmetric complex 
i.i.d. Gaussian [Rdykigh) of variance 1. randA randomization 
only. # post-SDR randomizations = 300. The symbol U indicates 
that Rx power constraints arc unifonnly distributed random vari- 
ables in [0,1], and redrawn for each MC run: 1 means that all Rx 
power constraints are fixed to 1 .  # MC-runs = 300. 

[ N / M  )I mean (U) I std (U) I mean ( 1 )  std (1)  1 

S116 2.1 I 0.65 
13/32 3.20 0.79 3.77 

TabIe 3. MC simulation results: mean and standard deviation of 
upper bound on power boost. Here, the best result from two ran- 
domization techniques (randA.randB) is chosen for each MC run. 
## post-SDR randomizations = 1000. # MC-runs = 1000. The re- 
maining parameters are as in Table 2. 

. ,  \ 

418 1 1.07 I 0.12 1.15 1 0.17 
4/16 1 1.32 I 0.26 1.49 I 0.30 
8/16 1 )  1.72 I 0.34 I 2.06 1 0.34 
8/32 11 2.51 I 0.43 I 2.96 I 0.44 

N=B-elemenl TI U U  (MamMa=IR); M=24 DNLK users; conslraiF115 = ones(M,l );NrandJOO 
{ - SUR. power boost ub = 1.001 1 90 

60 

270 

Scena~o:scluslersol4USerseach@ j-51.31.-11,11.31.5lj deg 

Fig. 1. Broadcast beamforming example using Algorithm in 
Table I. N=X-element Tx ULA (d/X=1/2); M=24 downlink 
users, in 6 clusters of 4 users each. Clusters ccnkred at 
[-51, -31, -11,11,31,51]0,  12’. Symmetric lobes appear due 
to the inherent ULA ambiguity. All Rx power constraints set to 
1. randA, # post-SDR randomizations = 300. In this case, the 
solution is guaranteed to be within 0.1% of the optimum. 
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ABSTRACT

The problem of simultaneous multiuser downlink beam-
forming has recently attracted significant interest in both
the Information Theory and Signal Processing communi-
ties. The idea is to employ a transmit antenna array to cre-
ate multiple ‘beams’ directed towards the individual users,
and the aim is to increase throughput, measured by sum ca-
pacity. Optimal solutions to this problem require convex
optimization and so-called Dirty Paper (DP) precoding for
known interference, which are prohibitively complex for ac-
tual online implementation at the base station. Motivated by
recent results by Viswanathan et al and Caire and Shamai,
we propose a computationally simple user selection method
coupled with zero-forcing beamforming. Our results indi-
cate that the proposed method attains a significant fraction
of sum capacity, and thus offers an attractive alternative to
DP-based schemes.

1. INTRODUCTION

Depending on whether or not Channel State Information
(CSI) is available at the transmitter, transmit antenna ar-
rays can be utilized in two basic ways or a combination
thereof: space-time coding, and spatial multiplexing. The
former can be used without CSI at the transmitter, and al-
lows mitigation and exploitation of fading. The latter re-
quires CSI at the transmitter, but in turn allows for much
higher throughput. Until recently, transmit beamforming
was mostly considered for voice services in the context of
the cellular downlink. With the emergence of 3G and 4G
systems, higher emphasis is being placed on packet data,
which are more delay-tolerant but require much higher
throughput. Hence the recent interest in transmit beamform-
ing strategies for the cellular downlink that aim for attaining
the sum capacity of the wireless channel [1, 8, 9, 4, 6, 7, 5].

�
Research supported in part by the European Research Office (ERO) of

the US Army under Contract N62558-03-C-0012, and in part by the Army
Research Laboratory under Cooperative Agreement DADD19-01-2-0011.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of ERO and ARL of the US Army.

The scenario of interest can be modeled as a non-de-
graded Gaussian broadcast channel (GBC). Let

�
be the

number of antennas at the transmitter (Base Station (BS)
in a cellular context), and consider a cluster of � mobile
users, each equipped with a single receive antenna. The
channel between each transmit and receive antenna is con-
stant over a certain time interval and known at the BS. The
received signal is corrupted by AWGN independent across
users. The BS may transmit simultaneously, using multiple
transmit beams, to more than one user in the cluster.

Since the receivers cannot cooperate, successful trans-
mission critically depends on the transmitter’s ability to si-
multaneously send independent signals with as small in-
terference between them as possible. Caire and Shamai
[1] proposed a multiplexing technique based on coding for
known interference, known as “Writing on Dirty Paper” or
Costa precoding [2]. In [2], it is proven that in an AWGN
channel with additional additive Gaussian interference,
which is known at the transmitter in advance (non-causally),
it is possible to achieve the same capacity as if there were no
interference. Assuming Costa precoding and known chan-
nels at the transmitter, Vishwanath et al. [6] and Yu and
Cioffi [9] have proposed algorithms that evaluate sum ca-
pacity of the GBC along with the associated optimal sig-
nal covariance matrix. However, both approaches require
convex optimization in (order of) � �

variables to find the
optimal signal covariance matrix.

The complexity of the proposed optimization algorithms
makes them unsuitable for actual implementation at the BS.
A reduced-complexity suboptimal solution to sum rate max-
imization is proposed in [1]. It suggests the use of QR
decomposition of the channel matrix combined with dirty
paper (DP) coding at the transmitter. The combined ap-
proach nulls interference between data streams, and hence,
it is named zero-forcing dirty-paper (ZF-DP) precoding. If� � � , ZF-DP is proven to be asymptotically optimal at
both low and high SNR, but suboptimal in general; whereas
zero-forcing (ZF) beamforming without DP coding is op-
timal in the low SNR regime and yields the same slope
of throughput versus SNR in decibels as the sum capacity
curve at high SNR. If

� � � , [1] has shown that random



selection of
� � �

users incurs throughput loss for both
ZF-DP and ZF. Tu and Blum [5] have proposed a selec-
tion algorithm that capitalizes on multiuser diversity, thus
increasing the throughput of ZF-DP precoding, and signif-
icantly narrowing the gap between ZF-DP throughput and
capacity.

An important shortcoming of DP coding is that it re-
quires vector coding and a long temporal block length to
be well-approximated in practice; furthermore, with current
state-of-art, such approximation entails high computational
complexity [3, 8, 10]. For this reason, we advocate herein a
more pragmatic approach, based on plain ZF beamforming
coupled with a new user selection method. Our approach
is applicable in the practically important case that the num-
ber of users exceeds the number of transmit antennas. Our
simulation results indicate that, at moderate and high SNR,
the proposed approach has equal slope of throughput ver-
sus SNR as the capacity curve, and it achieves a significant
fraction of capacity for all SNR.

ZF beamforming without DP coding was also consid-
ered by Spencer and Haardt [4], but they did not consider
user selection when � � �

. Viswanathan et al. [7] have
compared the performance of ZF versus ZF-DP, using a
simpler user selection scheme that schedules the

�
users

with the highest individual SINR. Under this simpler
scheme, they reported that ZF is close to ZF-DP in terms
of throughput. Our results further qualify [7], showing that
the same is true under a more sophisticated user selection
strategy that directly aims to optimize sum capacity. Fur-
thermore, we show that with this new user selection strategy
ZF comes close to attaining sum capacity.

2. ZERO-FORCING BEAMFORMING AND USER
SELECTION STRATEGY

Let � � � � model the quasi-static, flat-fading channel be-
tween transmit antenna � and the receive antenna of user� , and denote 	 � 
 � � � � � 
 � � � � � � � � � � � � . Similarly, let� � � � � 
 � � � � � � � � � � � � � � � ( � � � � denotes transpose) be
the beamforming weight vector for user � . Thus the chan-
nel matrix, � , and the beamforming weight matrix, � , are

� � � 	 �
 	 �� � � � 	 �� � �� � � � 
 � � � � � � � � � (1)

where � � � � denotes conjugate-transpose. Collecting the
baseband-equivalent outputs, the received signal vector is� � � �  ! " # (2)

where ! is the transmitted signal vector containing uncorre-
lated unit-power entries,

 �
$%%%
&

' ( 
 ) � � � )) ' ( � � � � )
...

...
. . .

...) ) � � � ' ( �
* +++
, (3)

accounts for power-loading and # is the noise vector. Note
that the elements of � are physically distributed across the

� mobile terminals. Multiuser decoding is therefore not
feasible, hence each user treats the signals intended for other
users as interference. Noise is assumed to be circular com-
plex Gaussian, zero-mean, uncorrelated with variance of
each complex entry - � � . .

The desired signal power received by user � is given by/ 	 � � � / � ( � . The Signal to Interference plus Noise Ratio
(SINR) of user � is0 1 � 2 � � / 	 � � � / � ( �34 56 � / 	 � � 4 / � ( 4 " - � � (4)

The problem of interest can now be formulated as

7 8 9: �3� 6 
 ; < = � . " 0 1 � 2 � � �
subject to:

/ / �  / / �> � ? � (5)

where
/ / � / / �> denotes Frobenius norm and

?
stands for a

bound on average transmitted power.
Attaining capacity requires Gaussian signaling and long

codes, yet the logarithmic SINR reward can be motivated
from other, more practical perspectives as well: it can be
shown that it measures the throughput of QAM-modulated
systems over both AWGN and Rayleigh fading channels.
The intuition is that SINR improvements eventually yield
diminishing throughput returns.

ZF beamforming inverts the channel matrix at the trans-
mitter, so that orthogonal channels between transmitter and
receivers are created. It is then possible to encode users in-
dividually, as opposed to more complex long-block-vector
coding needed to implement DP. Note that ZF at the trans-
mitter does not enhance noise at the receiver. If the number
of users, �

� �
, and @ A � B � � � � � , then the ZF beam-

forming matrix is � � � � � � � � � C 
 � (6)

which is the Moore-Penrose pseudoinverse of the channel
matrix. However, if � � �

it is not possible to use (6)
because � � � is singular. In that case, one needs to select� � �

out of � users.
For � � �

, the problem is reformulated as follows:
Let

� � D . � E � � � � � � F , and
0 � � D G H / G H I � F ,

such that
/ 0 � / � � . Given � I J � K �

, select � � �
,

and a set of channels, D 	 L M � � � � � 	 L N F , which produce the
row-reduced channel matrix� � 0 � � � � 	 �L M 	 �L O � � � 	 �L N � � (7)



such that the sum rate is the highest achievable:

� � �� � � � � � � �� � � � � � 	 � 

subject to

�� � � �
� � � 
� � � 	 � 
 	 
 � � � (8)

We define, � � � � 	 � 
 � � �� � � � � � � � � � � � � � 	 � 
 � 
 � (9)

where � � � 
 � � � � � � � � � ,� � � 	 � 
 � � � � � � 	 � 
 � � 	 � 
 � 
  � � � ! � �  � � (10)

and

�
is obtained by solving the water-filling equation in

(8). The power-loading then yields

" � � � � � 	 � 
 � � � 
� � � 	 � 
 	 
 � 
 � # 	 � � (11)

The problem can be conceptually solved by exhaustive
search: for each value of $ , find all possible $ -tuples

	 �
and select a pair � $ � 	 � 
 which yields maximum

� � � � 	 � 
 .
However, such an algorithm has prohibitive complexity.

We propose a reduced-complexity suboptimal algo-
rithm, dubbed Generalized Zero Forcing (GZF), as outlined
next.

1. Initialization:�
Set $ � 
 .

�
Find a user, % � , such that % � � � � � � � �& � � ' & ' �& .�
Set

	 � � � % � � and denote the achieved rate� � � � 	 � 
 ( � � .

2. While $ � �
:�

$ � $ ) 
 .
�

Find a user, % � , such that

% � � � � � � � �& � � � � � � * � � � � 	 �  � � � � � 
 ��
Set

	 � � 	 �  � � � % � � and denote the achieved
rate

� � � � 	 � 
 ( � � .
�

If
� � � � 	 � 
 ( � � + � � � � 	 �  � 
 ( � � break and

retain solution � $ � 
 � 	 �  � 
 .
3. Beamforming: , � � � 	 � 
 � � � � 	 � 
 � � 	 � 
 � 
  �

Power Loading: Water-filling

2.1. Implementation and Complexity

The most complex task is the evaluation of
� � � � 	 �  � �� � � 
 . From (9), it is split into the evaluation of the � � � 	 �  � �� � � 
 ’s followed by evaluation of

�
. An efficient way to

evaluate the � � � 	 �  � � � � � 
 ’s is by using the matrix inver-
sion lemma to invert the matrix � � 	 �  � � � � � 
 � �� � 	 �  � � � � � 
 � � 	 �  � � � � � 
 � . Note that

� � 	 �  � � � � � 
 � � � � 	 �  � 
 � &� �& � & ! & 	 �
where � & � � ' - * ' �& � ' - . ' �& � � � � ' - � � * ' �& � / and � & ! & �' & ' �& . Noting that � � 	 �  � 
 � � � � 	 �  � 
 , and writing� � � � 	 �  � 
  � � & � (12)

after some algebraic manipulation we obtain

� � 	 �  � � � � � 
  � � � � � 	 �  � 
  � � �  �� /�  � � 	
) � � & ! & � � �& � 
  � � � � � � �� � � 
 	 � (13)

where � /�  � � � � � � � � � � � 0 � �  � � . It can be verified that
each time $ is increased � � 	 �  � 
  � and � � ! & , � # 	 �  � ,
are known before the search over � # 1 � 	 �  � starts.
Hence, evaluation of � � 	 �  � � � � � 
  � from (12) and (13)
has complexity proportional to  � $ � 
 .

Given a set
	 � , we have [1]� � � 	 � 
 � 2 ' - ! " � 	 � � � % � � 
 # 2 � � (14)

where " � 	 � 
 # denotes the projector onto the orthogonal
complement of $ � 	 � 
 � % " � $ � ' - % � % & # 	 � � . It follows
that if (8) and (11) yield

" & � � , then
� � � � 	 �  � � � � � 
 �� � � � 	 �  � 
 . We discard such � . We also discard � if (8)

and (11) yield
" - ! � � for some % � # 	 �  � . This is done to

keep complexity at bay, for otherwise combinatorial search
might effectively emerge. Hence, user � is a candidate for	 � if

" � 3 � � 
 � # 	 �  � � � � � . From the properties of
water-filling, this holds if$� � ' ! � � 	 �  � � � � � 
 � � ) �� � � � � * ( ) & * 
� � � 	 �  � � � � � 
 �

(15)
where � � ' ! � � 	 �  � � � � � 
 � � + ,� � � � � * ( ) & * � � � 	 �  � � � � � 
 .
Then, we have� � 
$

4
5 � ) �� � � � � * ( ) & * 
� � � 	 �  � � � � � 


6
7 � (16)

If (15) is not satisfied, we skip to the next � . The overall
complexity of the algorithm is  � � - � 
 .

We note that the break in Step 2 is necessary when GZF
is used, but redundant when ZF-DP is used; it is shown in
[1, 5] that in the latter case, maximum sum rate can always
be achieved with

�
active users if

� 3 � [1]. On the other
hand, when ZF alone is used, the optimum number of active
users is $ . / 0 + �

and decreases as
�

decreases, so that for� 1 � , the ZF scheme reduces to maximum ratio combin-
ing (MRC), $ . / 0 � 
 [1]. This also holds for the proposed
GZF algorithm, which follows from the water-filling equa-
tion in (8) and the fact that � � � � 	 � 
 �  � � � � � � � � � � ! � .



3. SIMULATION RESULTS

The performance of the proposed algorithm is presented in
Fig. 1. The y-axis shows sum capacity and sum rate in
bits per channel use. The x-axis shows total power in dB.
Noise level of every user is 1. Sum capacity and sum rates
are averaged over 100 channels. Channels are complex-
valued, drawn from an i.i.d. Rayleigh distribution with unit-
variance for each channel entry. Note that GZF exhibits the
same slope of rate increase per dB of SNR as the sum ca-
pacity curve at moderate and high SNR. Also note that given�

, an increase in � narrows the gap between the sum rate,
achieved using GZF, and the sum capacity. This is due to
multiuser diversity - the more users that contend for trans-
mission, the higher the probability that

�
of them will be

almost orthogonal. This in turn reduces the advantage of
DP-coding based schemes over ZF.
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Fig. 1. GZF Performance

4. CONCLUSIONS

We have proposed a low-complexity algorithm for down-
link transmission in the GBC for the realistic case wherein
the number of users is greater than the number of transmit
antennas. We have evaluated the throughput performance
of the new algorithm via simulations. The results show that
ZF beamforming with the proposed user selection method
achieves a significant fraction of sum capacity, at a low
complexity cost. The simulation results indicate that GZF
achieves the same slope of throughput per dB of SNR as the
capacity-achieving strategy based on the use of DP coding
for known interference cancellation and convex optimiza-
tion. Due to its simplicity, low complexity, and close to op-
timal performance, the proposed method offers an attractive
alternative to earlier DP-based methods.
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